The expression for the area of the surface area of the light bulb is given as:
\(A = 4\pi {r^2}\)
The expression for the conduction heat transfer rate is given as:
\(\begin{array}{c}P = \frac{{kA\Delta T}}{l}\\\Delta T = \frac{{Pl}}{{kA}}\\ = \frac{{Pl}}{{k\left( {4\pi {r^2}} \right)}}\end{array}\)
Substitute the values in the above equation.
\(\begin{array}{c}\Delta T = \frac{{\left( {95\;{\rm{W}}} \right)\left[ {\left( {{\rm{0}}{\rm{.5}}\;{\rm{mm}}} \right)\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 3}}}}\;{\rm{m}}}}{{{\rm{1}}\;{\rm{mm}}}}} \right)} \right]}}{{\left( {0.84\;{{\rm{J}} \mathord{\left/{\vphantom {{\rm{J}} {{\rm{s}} \cdot {\rm{m}} \cdot {\rm{^\circ C}}}}} \right.\\} {{\rm{s}} \cdot {\rm{m}} \cdot {\rm{^\circ C}}}}} \right)\left[ {4\pi {{\left\{ {\left( {{\rm{3}}\;{\rm{cm}}} \right)\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 2}}}}\;{\rm{m}}}}{{{\rm{1}}\;{\rm{cm}}}}} \right)} \right\}}^2}} \right]}}\\ = 5{\rm{^\circ C}}\end{array}\)
Thus, the difference in temperatures between the inner and outer surfaces of the glass is \(5{\rm{^\circ C}}\).