The relation to find the amount of heat required is given by:
\(\begin{array}{l}Q = {Q_{\rm{h}}} + {Q_{\rm{m}}}\\Q = mc\Delta T + mL\end{array}\)
Here,\(L\)is the latent heat, cis the specific heat, and\(\Delta T\)is the change in temperature.
On plugging the values in the above relation, you get:
\(\begin{array}{l}Q = \left[ {\left( {23.50\;{\rm{kg}}} \right)\left( {230\;{\rm{J/kg}} \cdot \circ {\rm{C}}} \right)\left( {961\circ {\rm{C}} - {\rm{25}}\circ {\rm{C}}} \right) + \left( {23.50\;{\rm{kg}}} \right)\left( {0.88 \times {{10}5}\;{\rm{J/kg}}} \right)} \right]\\Q = 7.1 \times {106}\;{\rm{J}}\end{array}\)
Thus, \(Q = 7.1 \times {106}\;{\rm{J}}\) is the required amount of heat.