Bernoulli's equationis given by,
\(\frac{P}{{\rho g}} + \frac{{{v^2}}}{{2g}} + h = {\rm{ constant }}\)
Here\(\frac{P}{{\rho g}}\)is the pressure head,\(\frac{{{v^2}}}{{2g}}\)is the velocity head, and\(h\)is the height.
Applying Bernoulli's equation at the endpoints of the siphon tube, we get
\(\frac{{{P_1}}}{{\rho g}} + \frac{{v_1^2}}{{2g}} + {h_1} = \frac{{{P_2}}}{{\rho g}} + \frac{{v_2^2}}{{2g}} + {h_2}\)
Here, subscript 1 denotes the position at the base level of the clogged sink, and subscript 2 represents the position at the end of the siphon tube inside the pail. Since the pressure heads at both the ends of the siphon are equal to atmospheric pressure, Bernoulli's equation becomes,
\(\frac{{v_1^2}}{{2g}} + {h_1} = \frac{{v_2^2}}{{2g}} + {h_2}\)
The velocity inside the sink can be assumed to be zero. Therefore,\({v_1} = 0\).Now, Bernoulli's equation becomes,
\(\begin{array}{c}\frac{{v_2^2}}{{2g}}{\rm{ }} = {h_1} - {h_2}\\ = \Delta h\end{array}\)
Solving for\({v_2}\), we get
\({v_2} = \sqrt {2g\Delta h} \)
The change in height is given by,
\(\Delta h{\rm{ }} = 85\;\;{\rm{cm}} - (45\;\;{\rm{cm}} + 4\;\;{\rm{cm}}) = 36\;\;{\rm{cm}}\)
Substituting,\(36\;\;{\rm{cm}}\)for\(\Delta h\)and\(9.8\;\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}\)for\(g\)in the above expression,
\(\begin{array}{c}{v_2}{\rm{ }} = \sqrt {2\left( {9.8\;\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)(36\;\;{\rm{cm}})\left( {\frac{{1\;\;{\rm{m}}}}{{100\;\;{\rm{cm}}}}} \right)} \\ = \sqrt {7.056\;\;{{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{s}}^{\rm{2}}}} \\ = 2.66\;\;{\rm{m/s}}\end{array}\)
Therefore, the water velocity when the siphon enters into the pail is \(2.66\;\;{\rm{m/s}}\).