Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(III) A patient is to be given a blood transfusion. The blood is to flow through a tube from a raised bottle to a needle inserted in the vein (Fig. 10–55). The inside diameter of the 25-mm-long needle is 0.80 mm, and the required flow rate is \(2.0\;{\rm{c}}{{\rm{m}}^3}\) of blood per minute. How high h should the bottle be placed above the needle? Obtain \(\rho \) and \(\eta \) from the Tables. Assume the blood pressure is 78 torr above atmospheric pressure.

Figure 10-55

Short Answer

Expert verified

The bottle should be placed \(1.04\;{\rm{m}}\) above the needle.

Step by step solution

01

Concept

When a fluid is in static equilibrium condition, the pressure drop in the fluid relies upon the value of fluid’s density and its change in elevation point from the datum.

The relation for the pressure change is given by,

\(\Delta P = \rho gh\)

02

Given data

The length of the needle is, \(L = 25\;{\rm{mm}} \times \frac{{1\;{\rm{m}}}}{{1000\;{\rm{mm}}}} = 0.025\;{\rm{m}}\).

The inside diameter of the needle is, \(D = 0.80\;{\rm{mm}} \times \frac{{1\;{\rm{m}}}}{{1000\;{\rm{mm}}}} = 0.0008\;{\rm{m}}\).

The blood flow rate is, \(Q = 2.0\;{\rm{c}}{{\rm{m}}^3}{\rm{/min}} \times \frac{{1\;{{\rm{m}}^3}{\rm{/s}}}}{{{{10}^6} \times 60\;{\rm{c}}{{\rm{m}}^3}{\rm{/min}}}} = 3.33 \times {10^{ - 8}}\;{{\rm{m}}^3}{\rm{/s}}\).

The blood pressure is, \({P_{blood}} = 78\;{\rm{torr}} \times \frac{{133.3\;{\rm{Pa}}}}{{1\;{\rm{torr}}}} + {P_{atm}} = 10397.4\;{\rm{Pa}} + {P_{atm}}\)

03

Calculation

Using the property table,

The density of the blood is given as,

\(\rho = 1050\;{\rm{kg/}}{{\rm{m}}^{\rm{3}}}\)

The viscosity of the blood is given as,

\(\eta = 4.0 \times {10^{ - 3}}\;{\rm{Pa}} \cdot {\rm{s}}\)

Applying the Poiseuille’s law, the expression for the pressure drops between the inlet and exit of the needle is given as,

\(\begin{array}{c}Q = \frac{{\pi {D^4}\Delta P}}{{128\eta L}}\\3.33 \times {10^{ - 8}}\;{{\rm{m}}^3}{\rm{/s}} = \frac{{\pi \times {{\left( {0.0008\;{\rm{m}}} \right)}^4} \times \Delta P}}{{128 \times 4.0 \times {{10}^{ - 3}}\;{\rm{Pa}} \cdot {\rm{s}} \times 0.025\;{\rm{m}}}}\\\Delta P = 331.24\;{\rm{Pa}}\\{P_{exit}} - {P_{blood}} = 331.24\;{\rm{Pa}}\end{array}\)

Substituting the value in the above equation,

\(\begin{array}{c}{P_{exit}} = 331.24\;{\rm{Pa}} + {P_{blood}}\\{P_{exit}} = 331.24\;{\rm{Pa}} + 10397.4\;{\rm{Pa}} + {P_{atm}}\\{P_{exit}} = 10728.64\;{\rm{Pa}} + {P_{atm}}\end{array}\)

Using hydrostatic law, the change in pressure between the top of the bottle and the exit of the needle is given as,

\(\begin{array}{c}{P_{top}} + \rho gh = {P_{exit}}\\{P_{atm}} + 1050\;{\rm{kg/}}{{\rm{m}}^{\rm{3}}} \times 9.81\;{\rm{m/}}{{\rm{s}}^2} \times h = 10728.64\;{\rm{Pa}} + {P_{atm}}\\10300.5\;{\rm{kg/}}{{\rm{m}}^2} \cdot {{\rm{s}}^2} \times \frac{{1\;{\rm{N}}}}{{1\;{\rm{kg}} \cdot {\rm{m/}}{{\rm{s}}^2}}} \times h = 10728.64\;{\rm{Pa}} \times \frac{{1\;{\rm{N/}}{{\rm{m}}^2}}}{{1\;{\rm{Pa}}}}\\h = 1.04\;{\rm{m}}\end{array}\)

Thus, the bottle should be placed \(1.04\;{\rm{m}}\) above the needle.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free