Using law of equilibrium of forces,
\(\begin{aligned}{F_{\rm{W}}} &= {F_{\rm{B}}}\\\left( {{m_{{\rm{wood}}}} + {m_{{\rm{Pb}}}}} \right)g &= {\rho _{{\rm{water}}}}\left( {{V_{{\rm{wood}}}} + {V_{{\rm{Pb}}}}} \right)g\\\left( {{m_{{\rm{wood}}}} + {m_{{\rm{Pb}}}}} \right) &= {\rho _{{\rm{water}}}}\left( {\frac{{{m_{{\rm{wood}}}}}}{{{\rho _{{\rm{water}}}}}} + \frac{{{m_{{\rm{Pb}}}}}}{{{\rho _{{\rm{Pb}}}}}}} \right)\\{m_{{\rm{Pb}}}}\left( {1 - \frac{{{\rho _{{\rm{water}}}}}}{{{\rho _{{\rm{Pb}}}}}}} \right) &= {m_{{\rm{wood}}}}\left( {\frac{{{\rho _{{\rm{water}}}}}}{{{\rho _{{\rm{wood}}}}}} - 1} \right)\end{aligned}\)
Here,\({m_{{\rm{wood}}}}\)is the mass of wood,\({m_{{\rm{Pb}}}}\)is the mass of lead,\({\rho _{{\rm{wood}}}}\)is the density of wood,\({V_{{\rm{wood}}}}\)is the volume of wood,\({V_{{\rm{Pb}}}}\)is the volume of lead and\({\rho _{{\rm{Pb}}}}\)is the density of lead.
On rearranging the above relation.
\(\begin{aligned}{m_{{\rm{Pb}}}} &= {m_{{\rm{wood}}}}\frac{{\left( {\frac{{{\rho _{{\rm{water}}}}}}{{{\rho _{{\rm{wood}}}}}} - 1} \right)}}{{\left( {1 - \frac{{{\rho _{{\rm{water}}}}}}{{{\rho _{{\rm{Pb}}}}}}} \right)}}\\ &= {m_{{\rm{wood}}}}\frac{{\left( {\frac{1}{{S{G_{{\rm{wood}}}}}} - 1} \right)}}{{\left( {1 - \frac{1}{{S{G_{{\rm{Pb}}}}}}} \right)}}\end{aligned}\)
Here,\(S{G_{{\rm{wood}}}}\)is the specific gravity of wood and\(S{G_{{\rm{Pb}}}}\)is the specific gravity of lead.
Substitute the values in the above equation to find the mass of Lead.
\(\begin{aligned}{m_{{\rm{Pb}}}} &= 3.65\;{\rm{kg}}\frac{{\left( {\frac{1}{{0.50}} - 1} \right)}}{{\left( {1 - \frac{1}{{11.3}}} \right)}}\\ &= 4.00\;{\rm{kg}}\end{aligned}\)
Hence, the mass of lead is \(4\;{\rm{kg}}\).