Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Two ships moving in parallel paths close to one another risk colliding. Why?

Short Answer

Expert verified

Due to the pressure difference between the ships and outside them, the ships will be at risk of colliding.

Step by step solution

01

Understanding the Bernoulli’s Principle

Bernoulli's principle says that when the exact speed of fluid increases, then at the same time, the static pressure and the energy of fluid decrease.

02

Determine the reason of the risk of colliding

When ships move close to each other, there is a small space between them. The water speed in that region is very high, resulting in the decrease of pressure between the two ships, which follows Bernoulli’s principle.

The pressure between the two ships decreases but the pressure in the outer region of the ships remains the same at its initial value. This process creates the pressure difference between the two regions; one is the region between the ships, and another is outside the ships.

The pressure difference between the regions tends the two ships to collide with each other. Therefore, the two ships moving close to each other are always at risk of colliding.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What diameter must a \({\bf{15}}{\bf{.5}}\;{\bf{m}}\)-long air duct have if the ventilation and heating system is to replenish the air in a \({\bf{8}}{\bf{.0}}\;{\bf{m \times 14}}{\bf{.0}}\;{\bf{m \times 4}}{\bf{.0}}\;{\bf{m}}\) room every \({\bf{15}}{\bf{.0}}\;{\bf{min}}\)? Assume the pump can exert a gauge pressure of \({\bf{0}}{\bf{.710 \times 1}}{{\bf{0}}^{\bf{3}}}\;{\bf{atm}}\).

When you ascend or descend a great deal when driving in a car, your ears “pop,” which means that the pressure behind the eardrum is being equalized to that outside? If this did not happen, what would be the approximate force on an eardrum of area \(0.20\;c{m^2}\)if a change in altitude of 1250 m takes place?

In Fig. 10-54, take into account the speed of the top surface of the tank and show that the speed of fluid leaving an opening near the bottom is \({{\bf{v}}_{\bf{1}}}{\bf{ = }}\sqrt {\frac{{{\bf{2gh}}}}{{\left( {{\bf{1 - A}}_{\bf{1}}^{\bf{2}}{\bf{/A}}_{\bf{2}}^{\bf{2}}} \right)}}} \),

where \({\bf{h = }}{{\bf{y}}_{\bf{2}}} - {{\bf{y}}_{\bf{1}}}\), and \({{\bf{A}}_{\bf{1}}}\) and \({{\bf{A}}_{\bf{2}}}\) are the areas of the opening and of the top surface, respectively. Assume \({{\bf{A}}_{\bf{1}}}{\bf{ < < }}{{\bf{A}}_{\bf{2}}}\) so that the flow remains nearly steady and laminar.

Figure 10-54

(II)A 180 km/h wind blowing over the flat roof of a house causes the roof to lift off the house. If the house is\(6.2\;{\rm{m}} \times {\rm{12}}{\rm{.4}}\;{\rm{m}}\)in size, estimate the weight of the roof. Assume the roof is not nailed down.

A viscometer consists of two concentric cylinders, \({\bf{10}}{\bf{.20}}\;{\bf{cm}}\) and \({\bf{10}}{\bf{.60}}\;{\bf{cm}}\)in diameter. A liquid fills the space between them to a depth of \({\bf{12}}{\bf{.0}}\;{\bf{cm}}\). The outer cylinder is fixed, and a torque of \({\bf{0}}{\bf{.024}}\;{\bf{m}} \cdot {\bf{N}}\) keeps the inner cylinder turning at a steady rotational speed of \({\bf{57}}\;{\bf{rev/min}}\). What is the viscosity of the liquid?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free