Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(I) (a) Calculate the total force of the atmosphere acting on the top of a table that measures 1.7m× 2.6m. (b) What is the total force acting upward on the underside of the table?

Short Answer

Expert verified
  1. The force on the top of the table is 4.47 × 105 N.
  2. The force on the underside of the table is 4.47 × 105 N.

Step by step solution

01

Step-1: Understanding the force acting on a substance

In order to evaluate the force acting on a table utilize the relation of force with the pressure and the area of the table.

02

 Given the data

The area of table A =1.7m × 2.6m.

The atmospheric pressure P = 1.013 × 105N/m2.

03

Step-3:-Calculation of force on the top of the table

The force acting on the table is calculated as;

F = P × A

Substitute the values in the above relation

F = (1.013×105 N/m2) × (1.7m × 2.6m)

F = 4.47×105 N

Thus, the force acting on the top of the table is 4.47×105 N.

04

Step-4:  Calculation of force on the underside of the table

The atmospheric pressure on the table is equivalent at the top and underside of the table because air pressure's upward and downward forces are similar. Therefore, the force acting on the table is also the same on both sides.

Thus, the force acting on the underside of the table is also4.47×105 N.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(I) What is the approximate mass of air in a living room 5.6× 3.6× 2.4m?

An airplane has a mass of \({\bf{1}}{\bf{.7 \times 1}}{{\bf{0}}^{\bf{6}}}\;{\bf{kg}}\) and the air flows past the lower surface of the wings at 95 m/s. If the wings have a surface area of \({\bf{1200}}\;{{\bf{m}}^{\bf{2}}}\), how fast must the air flow over the upper surface of the wing if the plane is to stay in the air?

Four lawn sprinkler heads are fed by a 1.9-cm-diameter pipe. The water comes out of the heads at an angle of 35° above the horizontal and covers a radius of 6.0 m. (a) What is the velocity of the water coming out of each sprinkler head? (Assume zero air resistance.) (b) If the output diameter of each head is 3.0 mm, how many liters of water do the four heads deliver per second? (c) How fast is the water flowing inside the 1.9-cm-diameter pipe?

(II) In a movie, Tarzan evades his captors by hiding underwater for many minutes while breathing through a long, thin reed. Assuming the maximum pressure difference his lungs can manage and still breathe is –85 mm-Hg, calculate the deepest he could have been.

In Fig. 10-54, take into account the speed of the top surface of the tank and show that the speed of fluid leaving an opening near the bottom is \({{\bf{v}}_{\bf{1}}}{\bf{ = }}\sqrt {\frac{{{\bf{2gh}}}}{{\left( {{\bf{1 - A}}_{\bf{1}}^{\bf{2}}{\bf{/A}}_{\bf{2}}^{\bf{2}}} \right)}}} \),

where \({\bf{h = }}{{\bf{y}}_{\bf{2}}} - {{\bf{y}}_{\bf{1}}}\), and \({{\bf{A}}_{\bf{1}}}\) and \({{\bf{A}}_{\bf{2}}}\) are the areas of the opening and of the top surface, respectively. Assume \({{\bf{A}}_{\bf{1}}}{\bf{ < < }}{{\bf{A}}_{\bf{2}}}\) so that the flow remains nearly steady and laminar.

Figure 10-54

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free