Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(II) Point a is 62 cm north of a \( - {\bf{3}}{\bf{.8}}\;{\bf{\mu C}}\) point charge, and point b is 88 cm west of the charge (Fig. 17–40). Determine (a) \({{\bf{V}}_{\bf{b}}} - {{\bf{V}}_{\bf{a}}}\) and (b) \({{\bf{\vec E}}_{\bf{b}}} - {{\bf{\vec E}}_{\bf{a}}}\) (magnitude and direction).

FIGURE 17–40 Problem 27.

Short Answer

Expert verified

(a) The value of \({V_{\rm{b}}} - {V_{\rm{a}}}\)is \(1.6 \times {10^4}\;{\rm{V}}\).

(b) The magnitude of the electric field is \(9.9 \times {10^4}\;{{\rm{V}} \mathord{\left/{\vphantom {{\rm{V}} {\rm{m}}}} \right.} {\rm{m}}}\) and direction is \(64^\circ \) above the positive x-axis

Step by step solution

01

Step 1:Understanding of electric potential energy

The value of the electric potential energy of a charged particle in an electric field relies not only on the value of the electric field but also on the magnitude of the particle's charge.

02

Given information

The point charge is,\(Q = - 3.8\;{\rm{\mu C}}\).

The distance of the charge from the point b is,\({r_{\rm{b}}} = 88\;{\rm{cm}}\).

The distance of the charge from the point a is,\({r_{\rm{a}}} = 62\;{\rm{cm}}\).

03

Step 3:(a) Evaluation of the difference in the potential between point b and a

The electric potential at point b can be calculated as:

\(\begin{aligned}{V_{\rm{b}}} &= \frac{{kQ}}{{{r_{\rm{b}}}}}\\ &= \frac{{\left( {9 \times {{10}^9}\;{{{\rm{N}} \cdot {{\rm{m}}^{\rm{2}}}} \mathord{\left/{\vphantom {{{\rm{N}} \cdot {{\rm{m}}^{\rm{2}}}} {{{\rm{C}}^{\rm{2}}}}}} \right.} {{{\rm{C}}^{\rm{2}}}}}} \right)\left( {{\rm{ - 3}}{\rm{.8}}\;{\rm{\mu C}}} \right)\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}\;{\rm{C}}}}{{{\rm{1}}\;{\rm{\mu C}}}}} \right)}}{{\left( {{\rm{88}}\;{\rm{cm}}} \right)\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 2}}}}\;{\rm{m}}}}{{{\rm{1}}\;{\rm{cm}}}}} \right)}}\\ &= - 3.9 \times {10^4}\;{\rm{V}}\end{aligned}\)

The electric potential at point a can be calculated as:

\(\begin{aligned}{V_{\rm{a}}} &= \frac{{kQ}}{{{r_{\rm{a}}}}}\\ &= \frac{{\left( {9 \times {{10}^9}\;{{{\rm{N}} \cdot {{\rm{m}}^{\rm{2}}}} \mathord{\left/{\vphantom {{{\rm{N}} \cdot {{\rm{m}}^{\rm{2}}}} {{{\rm{C}}^{\rm{2}}}}}} \right.} {{{\rm{C}}^{\rm{2}}}}}} \right)\left( {{\rm{ - 3}}{\rm{.8}}\;{\rm{\mu C}}} \right)\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}\;{\rm{C}}}}{{{\rm{1}}\;{\rm{\mu C}}}}} \right)}}{{\left( {62\;{\rm{cm}}} \right)\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 2}}}}\;{\rm{m}}}}{{{\rm{1}}\;{\rm{cm}}}}} \right)}}\\ &= - 5.5 \times {10^4}\;{\rm{V}}\end{aligned}\)

The difference in the electric potential can be calculated as:

\(\begin{aligned}\Delta V &= {V_{\rm{b}}} - {V_{\rm{a}}}\\ &= \left( { - 3.9 \times {{10}^4}\;{\rm{V}}} \right) - \left( { - 5.5 \times {{10}^4}\;{\rm{V}}} \right)\\ &= 1.6 \times {10^4}\;{\rm{V}}\end{aligned}\)

Thus, the value of \({V_{\rm{b}}} - {V_{\rm{a}}}\)is \(1.6 \times {10^4}\;{\rm{V}}\).

04

Step 4:(b) Evaluation of the magnitude and direction of the net electric field

The electric field at point b can be calculated as:

\(\begin{aligned}{{{\bf{\vec E}}}_{\rm{b}}} &= \frac{{kq}}{{r_{\rm{b}}^{\rm{2}}}}\\ &= \frac{{\left( {9 \times {{10}^9}\;{{{\rm{N}} \cdot {{\rm{m}}^{\rm{2}}}} \mathord{\left/{\vphantom {{{\rm{N}} \cdot {{\rm{m}}^{\rm{2}}}} {{{\rm{C}}^{\rm{2}}}}}} \right.} {{{\rm{C}}^{\rm{2}}}}}} \right)\left( {{\rm{ - 3}}{\rm{.8}}\;{\rm{\mu C}}} \right)\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}\;{\rm{C}}}}{{{\rm{1}}\;{\rm{\mu C}}}}} \right)}}{{{{\left( {\left( {{\rm{88}}\;{\rm{cm}}} \right)\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 2}}}}\;{\rm{m}}}}{{{\rm{1}}\;{\rm{cm}}}}} \right)} \right)}^2}}}\\ &= - 44.16 \times {10^3}\;{{\rm{V}} \mathord{\left/{\vphantom {{\rm{V}} {\rm{m}}}} \right.} {\rm{m}}}\end{aligned}\)

The electric field at point a can be calculated as:

\(\begin{aligned}{{{\bf{\vec E}}}_{\rm{a}}} &= \frac{{kq}}{{r_{\rm{a}}^{\rm{2}}}}\\ &= \frac{{\left( {9 \times {{10}^9}\;{{{\rm{N}} \cdot {{\rm{m}}^{\rm{2}}}} \mathord{\left/{\vphantom {{{\rm{N}} \cdot {{\rm{m}}^{\rm{2}}}} {{{\rm{C}}^{\rm{2}}}}}} \right.} {{{\rm{C}}^{\rm{2}}}}}} \right)\left( {{\rm{ - 3}}{\rm{.8}}\;{\rm{\mu C}}} \right)\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}\;{\rm{C}}}}{{{\rm{1}}\;{\rm{\mu C}}}}} \right)}}{{{{\left( {\left( {62\;{\rm{cm}}} \right)\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 2}}}}\;{\rm{m}}}}{{{\rm{1}}\;{\rm{cm}}}}} \right)} \right)}^2}}}\\ &= - 88.96 \times {10^3}\;{{\rm{V}} \mathord{\left/{\vphantom {{\rm{V}} {\rm{m}}}} \right.} {\rm{m}}}\end{aligned}\)

The magnitude of the electric field can be calculated as:

\(\begin{aligned}\left| {{{{\bf{\vec E}}}_{\rm{b}}} - {{{\bf{\vec E}}}_{\rm{a}}}} \right| &= \sqrt {{\bf{\vec E}}_{\rm{b}}^{\rm{2}} + {\bf{\vec E}}_{\rm{a}}^2} \\ &= \sqrt {{{\left( { - 44.16 \times {{10}^3}\;{{\rm{V}} \mathord{\left/{\vphantom {{\rm{V}} {\rm{m}}}} \right.} {\rm{m}}}} \right)}^2} + {{\left( { - 88.96 \times {{10}^3}\;{{\rm{V}} \mathord{\left/{\vphantom {{\rm{V}} {\rm{m}}}} \right.} {\rm{m}}}} \right)}^2}} \\ &= 9.9 \times {10^4}\;{{\rm{V}} \mathord{\left/{\vphantom {{\rm{V}} {\rm{m}}}} \right.} {\rm{m}}}\end{aligned}\)

The direction of the electric field can be calculated as:

\(\begin{aligned}\theta &= {\tan ^{ - 1}}\left( {\frac{{{{{\bf{\vec E}}}_{\rm{a}}}}}{{{{{\bf{\vec E}}}_{\rm{b}}}}}} \right)\\ &= {\tan ^{ - 1}}\left( {\frac{{\left( { - 88.96 \times {{10}^3}\;{{\rm{V}} \mathord{\left/{\vphantom {{\rm{V}} {\rm{m}}}} \right.} {\rm{m}}}} \right)}}{{\left( { - 44.16 \times {{10}^3}\;{{\rm{V}} \mathord{\left/{\vphantom {{\rm{V}} {\rm{m}}}} \right.} {\rm{m}}}} \right)}}} \right)\\ &= 64^\circ \end{aligned}\)

Thus, the magnitude of the electric field is \(9.9 \times {10^4}\;{{\rm{V}} \mathord{\left/{\vphantom {{\rm{V}} {\rm{m}}}} \right.} {\rm{m}}}\) and direction is \(64^\circ \) above the positive x-axis.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(II) A \({\bf{ + 35}}\;{\bf{\mu C}}\) point charge is placed 46 cm from an identical \({\bf{ + 35}}\;{\bf{\mu C}}\) charge. How much work would be required to move a \({\bf{ + 0}}{\bf{.50}}\;{\bf{\mu C}}\) test charge from a point midway between them to a point 12 cm closer to either of the charges?

If the voltage across a fixed capacitor is doubled, the amount of energy it stores (a) doubles; (b) is halved; (c) is quadrupled; (d) is unaffected; (e) none of these. Explain.

(II) The dipole moment, considered as a vector, points from the negative to the positive charge. The water molecule, Fig. 17–42, has a dipole moment \({\bf{\vec p}}\) which can be considered as the vector sum of the two dipole moments, \({{\bf{\vec p}}_{\bf{1}}}\) and \({{\bf{\vec p}}_{\bf{2}}}\) as shown. The distance between each H and the O is about \({\bf{0}}{\bf{.96 \times 1}}{{\bf{0}}^{{\bf{ - 10}}}}\;{\bf{m}}\). The lines joining the centre of the O atom with each H atom make an angle of 104°, as shown, and the net dipole moment has been measured to be \({\bf{p = 6}}{\bf{.1 \times 1}}{{\bf{0}}^{{\bf{ - 30}}}}\;{\bf{C}} \cdot {\bf{m}}\). Determine the charge q on each H atom.

FIGURE 17–42 Problem 34

(I) What is the electric potential 15.0 cm from a \({\bf{3}}{\bf{.00}}\;{\bf{\mu C}}\) point charge?

A dielectric is pulled out from between the plates of a capacitor which remains connected to a battery. What changes occur to (a) the capacitance, (b) the charge on the plates, (c) the potential difference, (d) the energy stored in the capacitor, and (e) the electric field? Explain your answers.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free