Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(II) Two point charges, \({\bf{3}}{\bf{.0}}\;{\bf{\mu C}}\) and \({\bf{ - 2}}{\bf{.0}}\;{\bf{\mu C}}\) are placed 4.0 cm apart on the x axis. At what points along the x axis is (a) the electric field zero and (b) the potential zero?

Short Answer

Expert verified

(a) The electric field is zero at a distance of \(18.0\;{\rm{cm}}\) from the weaker charge.

(b) The electric potential is zero at a distance of \(1.6\;{\rm{cm}}\) from the weaker charge between the two charges and the electric potential is zero at a distance of \(8.0\;{\rm{cm}}\) from the weaker charge away from the positive charge.

Step by step solution

01

Understanding of electric potential

The electric potential may be defined as the potential energy per charge. It is a property of a location within an electric field. Its value is the same for all charges at a particular location.

02

Given information

The first charge is \({q_1} = 3.0\;{\rm{\mu C}}\).

The second charge is \({q_2} = - 2.0\;{\rm{\mu C}}\).

The separation between the charges is \(d = 4.0\;{\rm{cm}}\).

03

(a) Evaluation of the point where the electric field is zero

The following is the figure showing two point charges separated by a distance.

Let, P be the point where the net field due to charges \({q_1}\) and \({q_2}\) will be zero. The field will be zero, when it is closer to the weaker charge, say \({q_2}\). In between the two charges the electric field is parallel to each other and cannot cancel.

The field at point P due to charge \({q_1}\) is as follows:

\({E_1} = \frac{{k{q_1}}}{{{{\left( {x + d} \right)}^2}}}\)

The field at point P due to charge \({q_2}\) is as follows:

\({E_2} = \frac{{k{q_2}}}{{{{\left( x \right)}^2}}}\)

The expression for the net electric field can be written as:

\(\begin{aligned}{E_{{\rm{net}}}} &= {E_1} - {E_2} = 0\\{E_1} - {E_2} &= 0\\\left( {\frac{{k{q_1}}}{{{{\left( {x + d} \right)}^2}}}} \right) - \left( {\frac{{k{q_2}}}{{{{\left( x \right)}^2}}}} \right) &= 0\\\left( {\frac{{{q_1}}}{{{{\left( {x + d} \right)}^2}}}} \right) &= \left( {\frac{{{q_2}}}{{{x^2}}}} \right)\end{aligned}\)

Solve further as,

\(\begin{aligned}\sqrt {\frac{{{q_1}}}{{{q_2}}}} &= \frac{{\left( {x + d} \right)}}{{\left( x \right)}}\\x &= \left( {x + d} \right)\sqrt {\frac{{{q_1}}}{{{q_2}}}} \\x &= x\sqrt {\frac{{{q_1}}}{{{q_2}}}} + d\sqrt {\frac{{{q_1}}}{{{q_2}}}} \\x\left( {1 - \sqrt {\frac{{{q_1}}}{{{q_2}}}} } \right) &= d\sqrt {\frac{{{q_1}}}{{{q_2}}}} \\x &= \frac{{d\sqrt {{q_2}} }}{{\sqrt {{q_1}} - \sqrt {{q_2}} }}\end{aligned}\)

Substitute the values in the above equation.

\(\begin{aligned}x &= \frac{{\left( {{\rm{4}}\;{\rm{cm}}} \right)\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 2}}}}\;{\rm{m}}}}{{{\rm{1}}\;{\rm{cm}}}}} \right)\sqrt {\left( {\left| { - 2.0\;{\rm{\mu C}}} \right|} \right)\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}\;{\rm{C}}}}{{{\rm{1}}\;{\rm{\mu C}}}}} \right)} }}{{\sqrt {\left( {\left| {3.0\;{\rm{\mu C}}} \right|} \right)\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}\;{\rm{C}}}}{{{\rm{1}}\;{\rm{\mu C}}}}} \right)} - \sqrt {\left( {\left| { - 2.0\;{\rm{\mu C}}} \right|} \right)\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}\;{\rm{C}}}}{{{\rm{1}}\;{\rm{\mu C}}}}} \right)} }}\\x &= \left( {0.18\;{\rm{m}}} \right)\left( {\frac{{{\rm{1}}{{\rm{0}}^{\rm{2}}}\;{\rm{cm}}}}{{{\rm{1}}\;{\rm{m}}}}} \right)\\x &= 18.0\;{\rm{cm}}\end{aligned}\)

Thus, the electric field is zero at a distance of \(18.0\;{\rm{cm}}\) from the weaker charge.

04

(b) Evaluation of the point where the electric potential is zero

The following is the figure showing two point charges separated by a distance.

The potential is zero when it is closer to the weaker charge. Let, \({x_1}\) be the point between the two charges, and \({x_2}\) be the point to the left of weaker charge where the electric potential is zero.

The value of the \({x_1}\) can be calculated as:

\(\begin{aligned}{V_1} &= \frac{{k{q_1}}}{{\left( {d - {x_1}} \right)}} + \frac{{k{q_2}}}{{{x_1}}} = 0\\\frac{{k{q_1}}}{{\left( {d - {x_1}} \right)}} &= - \frac{{k{q_2}}}{{{x_1}}}\\{q_1}{x_1} = - {q_2}\left( {d - {x_1}} \right)\\\left( {{q_1} - {q_2}} \right){x_1} &= - {q_2}d\\{x_1} &= \frac{{ - {q_2}d}}{{\left( {{q_1} - {q_2}} \right)}}\end{aligned}\)

Substitute the values in the above equation.

\(\begin{aligned}{x_1} &= \frac{{ - \left( {\left( { - 2.0\;{\rm{\mu C}}} \right)\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}\;{\rm{C}}}}{{{\rm{1}}\;{\rm{\mu C}}}}} \right)} \right)\left( {\left( {{\rm{4}}\;{\rm{cm}}} \right)\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 2}}}}\;{\rm{m}}}}{{{\rm{1}}\;{\rm{cm}}}}} \right)} \right)}}{{\left( {\left( {3.0\;{\rm{\mu C}}} \right)\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}\;{\rm{C}}}}{{{\rm{1}}\;{\rm{\mu C}}}}} \right)} \right) - \left( {\left( { - 2.0\;{\rm{\mu C}}} \right)\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}\;{\rm{C}}}}{{{\rm{1}}\;{\rm{\mu C}}}}} \right)} \right)}}\\{x_1} &= \left( {0.016\;{\rm{m}}} \right)\left( {\frac{{{\rm{1}}{{\rm{0}}^{\rm{2}}}\;{\rm{cm}}}}{{{\rm{1}}\;{\rm{m}}}}} \right)\\{x_1} &= 1.6\;{\rm{cm}}\end{aligned}\)

Thus, the electric potential is zero at a distance of \(1.6\;{\rm{cm}}\) from the weaker charge between the two charges.

The value of the \({x_2}\) can be calculated as:

\(\begin{aligned}{V_2} &= \frac{{k{q_1}}}{{d + {x_2}}} + \frac{{k{q_2}}}{{{x_2}}} &= 0\\\frac{{k{q_1}}}{{d + {x_2}}} &= - \frac{{k{q_2}}}{{{x_2}}}\\{q_1}{x_2} &= {q_2}\left( {d + {x_2}} \right)\\\left( {{q_1} + {q_2}} \right){x_2} &= - {q_2}d\\{x_2} &= \frac{{ - {q_2}d}}{{\left( {{q_1} + {q_2}} \right)}}\end{aligned}\)

Substitute the values in the above equation.

\(\begin{aligned}{x_2} &= \frac{{ - \left( {\left( { - 2.0\;{\rm{\mu C}}} \right)\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}\;{\rm{C}}}}{{{\rm{1}}\;{\rm{\mu C}}}}} \right)} \right)\left( {\left( {{\rm{4}}\;{\rm{cm}}} \right)\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 2}}}}\;{\rm{m}}}}{{{\rm{1}}\;{\rm{cm}}}}} \right)} \right)}}{{\left( {\left( {3.0\;{\rm{\mu C}}} \right)\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}\;{\rm{C}}}}{{{\rm{1}}\;{\rm{\mu C}}}}} \right)} \right) + \left( {\left( { - 2.0\;{\rm{\mu C}}} \right)\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}\;{\rm{C}}}}{{{\rm{1}}\;{\rm{\mu C}}}}} \right)} \right)}}\\{x_2} &= \left( {0.08\;{\rm{m}}} \right)\left( {\frac{{{\rm{1}}{{\rm{0}}^{\rm{2}}}\;{\rm{cm}}}}{{{\rm{1}}\;{\rm{m}}}}} \right)\\{x_2} &= 8.0\;{\rm{cm}}\end{aligned}\)

Thus, the electric potential is zero at a distance of \(8.0\;{\rm{cm}}\) from the weaker charge away from the positive charge.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free