Now apply the conservation of energy principle to calculate the velocity of the electron.
\(\begin{aligned}KE &= PE\\\frac{1}{2}m{v^2} &= PE\\v &= \sqrt {\frac{{2PE}}{m}} \end{aligned}\)
Here, \(m\) is the mass of the electron and its value is \(9.11 \times {10^{ - 31}}\;{\rm{kg}}\).
Substitute the values in the above equation.
\(\begin{aligned}v &= \sqrt {\frac{{2\left( {3.82 \times {{10}^{ - 17}}\;{\rm{J}}} \right)}}{{\left( {9.11 \times {{10}^{ - 31}}\;{\rm{kg}}} \right)}}} \\ &= 9.16 \times {10^6}\;{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {\rm{s}}}} \right.} {\rm{s}}}\end{aligned}\)
Thus, the velocity of the electron is \(9.16 \times {10^6}\;{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {\rm{s}}}} \right.} {\rm{s}}}\).