According to Coulomb’s law, the force acting between the two charged spheres can be expressed as:
\(F = k\frac{{\left| {QQ} \right|}}{{{{\left( {2r} \right)}^2}}}\)
\(F = k\frac{{{Q^2}}}{{{{\left( d \right)}^2}}}\) … (i)
Here, both charges are of equal magnitude (Q). The distance between both charges is (2r), which is equal to the diameter (d) of one sphere.
The weight of one sphere can be expressed as:
\(\begin{aligned}{c}W &= mg\\W &= \rho Vg\\W &= \rho \left( {\frac{{4\pi {r^3}}}{3}} \right)g\end{aligned}\)
\(W = \rho \times \frac{4}{3}\pi {\left( {\frac{d}{2}} \right)^3} \times g\) … (ii)
Here, m is the mass of one sphere and V is the volume of the sphere.
Equate equations (i) and (ii), and evaluate the magnitude of the charge.
\(\begin{aligned}{c}F &= W\\k\frac{{{Q^2}}}{{{{\left( d \right)}^2}}} &= \rho \times \frac{4}{3}\pi {\left( {\frac{d}{2}} \right)^3} \times g\\{Q^2} &= \frac{4}{3} \times \frac{1}{8} \times \pi \times \frac{{\rho g{d^5}}}{k}\\Q &= \sqrt {\frac{1}{6}\left( {\frac{{\pi \rho g{d^5}}}{k}} \right)} \end{aligned}\)
Substitute the values in the above equation.
\(\begin{aligned}{c}Q &= \sqrt {\frac{1}{6}\left( {\frac{{\pi \times {\rm{35 kg/}}{{\rm{m}}^3} \times 9.81{\rm{ m/}}{{\rm{s}}^2} \times {{\left( {0.02{\rm{ m}}} \right)}^5}}}{{9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^2}{\rm{/}}{{\rm{C}}^2}}}} \right)} \\ &= \sqrt {\frac{1}{6}\left( {\frac{{3.452 \times {{10}^{ - 6}}{\rm{ kg}} \cdot {{\rm{m}}^3}{\rm{/}}{{\rm{s}}^2}\left( {\frac{{1{\rm{ N}}}}{{1{\rm{ kg}} \cdot {\rm{m/}}{{\rm{s}}^2}}}} \right)}}{{9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^2}{\rm{/}}{{\rm{C}}^2}}}} \right)} \\ &= \sqrt {\frac{1}{6} \times \left( {3.835 \times {{10}^{ - 16}}} \right){\rm{ }}{{\rm{C}}^2}} \\ \approx 8 \times {10^{ - 9}}{\rm{ C}}\end{aligned}\)
Thus, the magnitude of the charge is\(8 \times {10^{ - 9}}{\rm{ C}}\).