The expression for the electric force is given as:
\(F = k\frac{{{Q_1}{Q_2}}}{{{r^2}}}\)
Substitute the values in the above expression.
\(\begin{aligned}{l}F = \left( {9.0 \times {{10}^9}\;{\rm{N}} \cdot {{\rm{m}}^2}{\rm{/}}{{\rm{C}}^2}} \right)\frac{{\left( {25 \times {{10}^{ - 6}}\;{\rm{C}}} \right)\left( {2.5 \times {{10}^{ - 3}}\;{\rm{C}}} \right)}}{{{{\left( {16\;{\rm{cm}} \times \frac{{{{10}^{ - 2}}\;{\rm{m}}}}{{1\;{\rm{cm}}}}} \right)}^2}}}\\F = 2.2 \times {10^4}\;{\rm{N}}\end{aligned}\)
Thus, the magnitude of the force exerted is\(2.2 \times {10^4}\;{\rm{N}}\).