The magnitude of the force on an electron can be expressed as follows:
\(F = qE\) … (i)
From Newton’s second law, the magnitude of the force can be expressed as follows:
\(F = ma\) … (ii)
Here, ais the acceleration of an electron.
Equate equations (i) and (ii). Then evaluate the expression of the acceleration.
\(\begin{aligned}{c}F = qE\\F = ma\\a = \frac{{qE}}{m}\end{aligned}\)
Substitute the values in the above equation.
\(\begin{aligned}{c}a = \frac{{1.6 \times {{10}^{ - 19}}{\rm{ C}} \times 756{\rm{ N/C}}\left( {\frac{{1{\rm{ kg}} \cdot {\rm{m/}}{{\rm{s}}^2}}}{{1{\rm{ N}}}}} \right)}}{{9.1 \times {{10}^{ - 31}}{\rm{ kg}}}}\\ = \frac{{1.21 \times {{10}^{ - 16}}{\rm{ kg}} \cdot {\rm{m/}}{{\rm{s}}^2}}}{{9.1 \times {{10}^{ - 31}}{\rm{ kg}}}}{\rm{ }}\\ = 1.33 \times {10^{14}}{\rm{ m/}}{{\rm{s}}^2}\end{aligned}\)
The charge of an electron is a negative sign. The acceleration is in the opposite direction of the field. The acceleration is dependent on the direction of the electric field.
Thus, the magnitude of the acceleration of an electron is \(1.33 \times {10^{14}}{\rm{ m/}}{{\rm{s}}^2}\). The direction of acceleration is opposite to the direction of the electric field.