
The force on the charge at A in the x-direction is given as:
\(\begin{aligned}{c}{F_x} = {F_4} + {F_3}\cos 45^\circ \\{F_x} = k\frac{{{q^2}}}{{{d^2}}} + k\frac{{{q^2}}}{{{{\left( {\sqrt 2 d} \right)}^2}}} \times \frac{1}{{\sqrt 2 }}\\{F_x} = k\frac{{{q^2}}}{{{d^2}}}\left( {1 + \frac{1}{{2\sqrt 2 }}} \right)\end{aligned}\)
Substitute the values in the above expression.
\(\begin{aligned}{l}{F_x} = \left( {9.0 \times {{10}^9}\;{\rm{N}}{{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right)\frac{{{{\left( {6.15 \times {{10}^{ - 3}}\;{\rm{C}}} \right)}^2}}}{{{{\left( {0.100\;{\rm{m}}} \right)}^2}}}\left( {1 + \frac{1}{{2\sqrt 2 }}} \right)\\{F_x} = 4.61 \times {10^7}\;{\rm{N}}\end{aligned}\)
The force on the charge at A in the y-direction is given as:
\(\begin{aligned}{c}{F_y} = {F_2} + {F_3}\sin 45^\circ \\{F_y} = k\frac{{{q^2}}}{{{d^2}}} + k\frac{{{q^2}}}{{{{\left( {\sqrt 2 d} \right)}^2}}} \times \frac{1}{{\sqrt 2 }}\\{F_y} = k\frac{{{q^2}}}{{{d^2}}}\left( {1 + \frac{1}{{2\sqrt 2 }}}
\right)\end{aligned}\)
Substitute the values in the above expression.
\(\begin{aligned}{l}{F_y} = \left( {9.0 \times {{10}^9}\;{\rm{N}}{{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right)\frac{{{{\left( {6.15 \times {{10}^{ - 3}}\;{\rm{C}}} \right)}^2}}}{{{{\left( {0.100\;{\rm{m}}} \right)}^2}}}\left( {1 + \frac{1}{{2\sqrt 2 }}} \right)\\{F_y} = 4.61 \times {10^7}\;{\rm{N}}\end{aligned}\)
The net force on charge A is given as:
\({F_{\rm{A}}} = \sqrt {F_x^2 + F_y^2} \)
Substitute the values in the above expression.
\(\begin{aligned}{c}{F_{\rm{A}}} = \sqrt {{{\left( {4.61 \times {{10}^7}\;{\rm{N}}} \right)}^2} + {{\left( {4.61 \times {{10}^7}\;{\rm{N}}} \right)}^2}} \\{F_{\rm{A}}} = 6.52 \times {10^7}\;{\rm{N}}\end{aligned}\)
Since all the charges are identical and they are located at the corners of a square, then from symmetry, the magnitude of the force on each charge will be the same.
Thus, the magnitude of force on each charge is \(6.52 \times {10^7}\;{\rm{N}}\).