From equation (i), the expression to find the force on charge three is given as:
\({F_3} = \frac{{k{q_1}{q_3}}}{{{r_0}^2}} + \frac{{k{q_2}{q_3}}}{{{r^2}}}\)
Substitute the values in the above expression.
\(\begin{aligned}{l}{F_3} = - \left( {8.988 \times {{10}^9}\;{\rm{N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right)\left( {\frac{{\left( {65 \times {{10}^{ - 6}}\;{\rm{C}}} \right)\left( {95 \times {{10}^{ - 6}}\;{\rm{C}}} \right)}}{{{{\left( {0.35\;{\rm{m}}} \right)}^2}}} + \frac{{\left( {48 \times {{10}^{ - 6}}\;{\rm{C}}} \right)\left( {95 \times {{10}^{ - 6}}\;{\rm{C}}} \right)}}{{{{\left( {0.35\;{\rm{m}}} \right)}^2}}}} \right)\\{F_3} = - 447.8\;{\rm{N}}\end{aligned}\)
Thus, the net force on charge 3 is \( - 447.8\;{\rm{N}}\) towards the left.