Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A horizontal 800-N merry-go-round is a solid disk of radius 1.50 m and is started from rest by a constant horizontal force of 50.0 N applied tangentially to the edge of the disk. Find the kinetic energy of the disk after 3.00 s.

Short Answer

Expert verified

The kinetic energy of the disk after 3.00 s is,K=276J.

Step by step solution

01

Definition of energy consideration

According to the conservation of energy, the work done on the system = energy generated in the system.

02

The given values

W=800NR=1.5mωi=0F=50Nt=3s

03

Calculating the moment of inertia

The weight of the merry-go-round is found by:

W=mg

Solve for (m):

m=Wg=8009.8=81.6kg

The moment of inertia of the merry-go-round (solid disk):

I=12MR2

Substituting the numerical value:

I=12(81.6)(1.5)2=91.8kg·m2

The merry-go-round as a rigid object under a net torque

τ=FR=Iα

Solve for(α).

α=FRI

Substituting the numerical value

α=(50)(1.5)91.8=0.817rad/s2

Model the merry-go-round as a rigid object under constant angular acceleration and use the following equation to find the final angular velocity

ωf=ωi+αt

Substitute the numerical value

ωf=0+(0.817)(3)=2.45rad/s

The kinetic energy of the disk

K=12Iωf2

Substitute the numerical value

K=12(91.8)(2.45)2=276J

Thus, the energy is 276J.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A small object with mass 4.00 kg moves counter-clockwise with constant angular speed 1.50 rad/s in a circle of radius 3.00 m centered at the origin. It starts at the point with position vector 3.00i^m. It then undergoes an angular displacement of 9.00 rad. (a) What is its new position vector? Use unit-vector notation for all vector answers. (b) In what quadrant is the particle located, and what angle does its position vector make with the positive x axis? (c) What is its velocity? (d) In what direction is it moving? (e) What is its acceleration? (f) Make a sketch of its position, velocity, and acceleration vectors. (g) What total force is exerted on the object?

A discus thrower (Fig. P4.33, page 104) accelerates a discus from rest to a speed of 25.0 m/s by whirling it through 1.25 rev. Assume the discus moves on the arc of a circle 1.00 m in radius. (a) Calculate the final angular speed of the discus. (b) Determine the magnitude of the angular acceleration of the discus, assuming it to be constant. (c) Calculate the time interval required for the discus to accelerate from rest to 25.0 m/s.

85. A thin rod of length and massM is held vertically with its lower end resting on a frictionless, horizontal surface. The rod is then released to fall freely. (a) Determine the speed of its center of mass just before it hits the horizontal surface. (b) What If? Now suppose the rod has a fixed pivot at its lower end. Determine the speed of the rod’s center of mass just before it hits the surface.

Question: Suppose a car’s standard tires are replaced with tires 1.30 times larger in diameter. (i) Will the car’s speedometer reading be (a) 1.69 times too high, (b) 1.30 times too high, (c) accurate, (d) 1.30 times too low, (e) 1.69 times too low, or (f) inaccurate by an unpredictable factor? (ii) Will the car’s fuel economy in miles per gallon or km/L appear to be (a) 1.69 times better, (b) 1.30 times better, (c) essentially the same, (d) 1.30 times worse, or (e) 1.69 times worse?

The top in Figure P10.51 has a moment of inertia of 4.00×10-4kg·m2and is initially at rest. It is free to rotate about the stationary axis AA'.A string, wrapped around a peg along the axis of the top, is pulled in such a manner as to maintain a constant tension of5.57 N. If the string does not slip while it is unwound from the peg, what is the angular speed of the top after 80.0 cmof string has been pulled off the peg?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free