Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A World War II bomber flies horizontally over level terrain with a speed of 275m/srelative to the ground and at an altitude of.3.00km The bombardier releases one bomb. (a) How far does the bomb travel horizontally between its release and its impact on the ground? Ignore the effects of air resistance. (b) The pilot maintains the plane's original course, altitude, and speed through a storm of flak. Where is the plane when the bomb hits the ground? (c) The bomb hits the target seen in the telescopic bombsight at the moment of the bomb's release. At what angle from the vertical was the bombsight set?

Short Answer

Expert verified

(a) The bomb travel horizontally between its release and its impacts on the ground is6.79km

(b) If The bomb hits the ground, the plane will be vertically above the point where the bomb hits.

(c) Angle from the vertical was the bombsight set66.2

Step by step solution

01

Determine the formula for time

Distance is thus the product of velocity and time. Similarly, you may determine how much time it takes to go a specific distance at a known speed. This time is obtained by dividing the distance by the selected speed.

t=ds

s=Speed

d=Distance

t=Time

02

Determine the bomb travel horizontally between its release and its impacts on the ground

(a)

The height of the plane is

h=3.00km

=3000m

The horizontal velocity is.vh=275m/s Since there is no air resistance, the only force acting on the shell is gravity, which is vertical. The acceleration due to gravity is.g=9.81m/s2 So the time taken by the shell to hit the ground is

t=2hg

=2(3000m/s)(9.81m/s)

=24.7s

Hence, the horizontal distance traveled by the shell is

R=vht

=(275m/s)(24.7m/s)

=6792m

=6.79km

Hence, the bomb travel horizontally between its release and its impacts on the ground is.6.79km

03

Determine the plane when the bomb hits the ground

(b)

Since the horizontal speed of the shell and the plane is the same, they will travel the same horizontal distance.

Hence, when the bomb hits the ground, the plane will be vertically above the ground where the bomb hits.

04

Determine the angle from the vertical was the bombsight set

(c)

The horizontal distance traveled by the bomb is R=6.79kmand the vertical distance traveled by the bomb ish=3.00km

Hence, the angle with the vertical is

θ=tan1(Rh)

=tan1(6.79km3.00km)

=66.2

Hence, the angle from the vertical was the bombsight set66.2

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A cannon with a muzzle speed of 1000m/sis used to start an avalanche on a mountain slope. The target is2000mfrom the cannon horizontally and800mabove the cannon. At what angle, above the horizontal, should the cannon be fired?

An astronaut on the surface of the Moon fires a cannon to launch an experiment package, which leaves the barrel moving horizontally. Assume the free-fall acceleration on the Moon is one-sixth of that on the Earth.

(a) What must the muzzle speed of the package be so that it travels completely around the Moon and returns to its original location?

(b) What time interval does this trip around the Moon require?

An athlete swings a ball, connected to the end of a chain, in a horizontal circle. The athlete is able to rotate the ball at the rate of8.00 rev/swhen the length of the chain is0.600 m. When he increases the length to0.900 m, he is able to rotate the ball only6.00 rev/s.

(a) Which rate of rotation gives the greater speed for the ball?

(b) What is the centripetal acceleration of the ball at8.00 rev/s?

(c) What is the centripetal acceleration at6.00 rev/s?

A ball on the end of a string is whirled around in a horizontal circle of radius0.300m. The plane of the circle is1.20mabove the ground. The string breaks and the ball lands2.00m(horizontally) away from the point on the ground directly beneath the ball's location when the string breaks. Find the radial acceleration of the ball during its circular motion.

A tire 0.500 m in radius rotates at a constant rate of 200rev/min. Find the speed and acceleration of a small stone lodged in the tread of the tire (on its outer edge).

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free