Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For the cellar of a new house, a hole is dug in the ground, with the vertical sides going down 2.40 m. A concrete foundation wall is built all the way across the 9.60-m width of the excavation. This foundation wall is 0.183 m away from the front of the cellar hole. During a rainstorm, drainage from the street fills up the space in front of the concrete wall, but not the cellar behind the wall. The water does not soak into the clay soil. Find the force the water causes on the foundation wall. For comparison, the weight of the water is given by2.40m×9.60m×0.183m×1000kg/m3×9.8m/s2=41.3kN

Short Answer

Expert verified

The force horizontally downward at the back of the hole is F=2.71×105N

Step by step solution

01

Given Data

h=2.4mb=9.6mTheweightofthewater=41.3kN

02

Concept

Theexcesspressuregenerallyknownasgaugepressureisgivenby:

Pgauge=ρgh

The force formula is:

F=PgaugeA

Where,

role="math" localid="1663671952173" F=Force

A=Area

Pgauge=Pressure at gauge

03

Step 3: Find the force the water causes on the foundation wall.

The pressure of the water over air half way down is given by the formula:

Pgauge=ρghPgauge=1000kg/m3×9.8m/s2×120mPgauge=1.18×104pa

Theforceonthewallduetothewaterisgivenbyusingformula:

F=Pgauge×AF=1.18×104×2.40m×9.60mF=2.71×105N

Thisforceishorizontally downward at thebackofthehole.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Why is the following situation impossible? A barge is carrying a load of small pieces of iron along a river. The iron pile is in the shape of a cone for which the radiusrof the base of the cone is equal to the central height h of the cone. The barge is square in shape, with vertical sides of length 2r, so that the pile of iron comes just up to the edges of the barge. The barge approaches a low bridge, and the captain realizes that the top of the pile of iron is not going to make it under the bridge. The captain orders the crew to shovel iron pieces from the pile into the water to reduce the height of the pile. As iron is shoveled from the pile, the pile always has the shape of a cone whose diameter is equal to the side length of the barge. After a certain volume of iron is removed from the barge, it makes it under the bridge without the top of the pile striking the bridge.

Question:A water supply maintains a constant rate of flow for water in a hose. You want to change the opening of the nozzle so that water leaving the nozzle will reach a height that is four times the current maximum height the water reaches with the nozzle vertical. To do so, should you (a) decrease the area of the opening by a factor of 16, (b) decrease the area by a factor of 8, (c) decrease the area by a factor of 4, (d) decrease the area by a factor of 2, or (e) give up because it cannot be done?

Io, a satellite of Jupiter, has an orbital period of 1.77 days and an orbital radius of 4.22 3 105 km. From these data, determine the mass of Jupiter.

Question:You are a passenger on a spacecraft. For your survival and comfort, the interior contains air just like that at the surface of the Earth. The craft is coasting through a very empty region of space. That is, a nearly perfect vacuum exists just outside the wall. Suddenly, a meteoroid pokes a hole, about the size of a large coin, right through the wall next to your seat. (a) What happens? (b) Is there anything you can or should do about it?

A backyard swimming pool with a circular base of diameter is filled to depth1.5m

(a) Find the absolute pressure at the bottom of the pool.

(b) Two persons with combined mass150kg enter the pool and float quietly there. No water overflows. Find the pressure increase at the bottom of the pool after they enter the pool and float

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free