Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A block of mass M rests on a table. It is fastened to the lower end of a light, vertical spring. The upper end of the spring is fastened to a block of mass m. The upper block is pushed down by an additional force 3 mg, so the spring compression is 4mg/k. In this configuration, the upper block is released from rest. The spring lifts the lower block off the table. In terms of m, what is the greatest possible value for M?

Short Answer

Expert verified

The greatest possible value for M=2m.

Step by step solution

01

Step 1:

Isolated system (energy), the total energy of an isolated system conserved,

ΔEmech=0

This can be written as follows:

role="math" localid="1663597401666" ΔK+ΔU+ΔEint=0

Here,

ΔU=Change in potential energy

ΔK=Change in kinetic energy

ΔEint=Change in internal energy

02

Step 2:

As the lower block is just lifted from the table, the upward force applied to it must be equal to the weight of the block. The extension of the spring, from, |F¯s|=kxmust be Mgk. From point at release to the point when the moving block first comes to rest, apply the law of conservation of energy:

Ki+Ugi+Usi=Kf+Ugf+Usf0+mg-4mgk+12k4mgk2=0+mgMgk+12kMgk2

4m2g2k+8m2g2k=mMg2k+M2g22k4m2=mM+M22

mM+M22+4m2=0M=m±m2412(4m2)2.12M=m±9m2

Mass cannot be negative. So,

M=m(31)=2m.

The value of massM is twice that of m.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Make an order-of-magnitude estimate of your power output as you climb stairs. In your solution, state the physical quantities you take as data and the values you measure or estimate for them. Do you consider your peak power or your sustainable power?

Review: As shown in Figure P8.46, a light string that does not stretch changes from horizontal to vertical as it passes over the edge of a table. The string connects m1, 3.50kga block originally at rest on the horizontal table at a height h=1.20mabove the floor, to m2, a hanging 1.90kg block originally a distance d=0.900mabove the floor. Neither the surface of the table nor its edge exerts a force of kinetic friction. The blocks start to move from rest. The sliding block m1 is projected horizontally after reaching the edge of the table. The hanging block m2 stops without bouncing when it strikes the floor. Consider the two blocks plus the Earth as the system. (a) Find the speed at which leaves the edge of the table. (b) Find the impact speed of m1on the floor. (c) What is the shortest length of the string so that it does not go taut while m1is in flight? (d) Is the energy of the system when it is released from rest equal to the energy of the system just before m1strikes the ground? (e) Why or why not?

A ball of mass m falls from a height h to the floor. (a)Write the appropriate version of Equation 8.2 for the system of the ball and the Earth and use it to calculate the speed of the ball just before it strikes the Earth. (b) Write the appropriate version of Equation 8.2 for the system of the ball and use it to calculate the speed of the ball just before it strikes the Earth.

Review: Why is the following situation impossible? A new high-speed roller coaster is claimed to be so safe that the passengers do not need to wear seat belts or any other restraining device. The coaster is designed with a vertical circular section over which the coaster travels on the inside of the circle so that the passengers are upside down for a short time interval. The radius of the circular section is 12.0 m, and the coaster enters the bottom of the circular section at a speed of 22.0 m/s. Assume the coaster moves without friction on the track and model the coaster as a particle.

A wind turbine on a wind farm turns in response to a force of high-speed air resistance, P=12DρAv2. The power available is, P=Rv=12Dρπr2v3where v is the wind speed and we have assumed a circular face for the wind turbine of radius r. Take the drag coefficient as D = 1.00 and the density of air from the front endpaper. For a wind turbine having r = 1.50 m, calculate the power available with (a) v = 8.00 m/s and (b) v = 24.0 m/s. The power delivered to the generator is limited by the efficiency of the system, about 25%. For comparison, a large American home uses about 2 kW of electric power.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free