Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If sunlight shines straight onto a peacock feather, the feather appears bright blue when viewed from15on either side of the incident beam of light. The blue color is due to diffraction from parallel rods of melanin in the feather barbules, as was shown in the photograph on page 940. Other wavelengths in the incident light are diffracted at different angles, leaving only the blue light to be seen. The average wavelength of blue light is 470nm. Assuming this to be the first-order diffraction, what is the spacing of the melanin rods in the feather?

Short Answer

Expert verified

The feather's melanin rods are d=1.82μminches apart.

Step by step solution

01

Step: 1 Wavelength of blue light:

High energy visible (HEV) light, often called blue light, has the shortest wavelength of actinic ray (role="math" localid="1649157295025" 380nm to 500nm) so produces the foremost energy.

02

Step: 2 Derivating part:

The grating spacing as

dsinθm=mλd=mλsinθm.

03

Step: 3 Finding spacing:

The spacing as

d=1×4.7×107sin15d=1.82×106m.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A double-slit experiment is set up using a helium-neon laser (λ=633nm). Then a very thin piece of glass (n=1.50) is placed over one of the slits. Afterward, the central point on the screen is occupied by what had been the m=10 dark fringe. How thick is the glass?

In a single-slit experiment, the slit width is 200 times the wavelength of the light. What is the width (inmm)of the central maximum on a screen 2.0m behind the slit?

Optical computers require microscopic optical switches to turn signals on and off. One device for doing so, which can be implemented in an integrated circuit, is the Mach-Zender interferometer seen in FIGURE. Light from an on-chip infrared laser (λ=1.000μm)is split into two waves that travel equal distances around the arms of the interferometer. One arm passes through an electro-optic crystal, a transparent material that can change its index of refraction in response to an applied voltage. Suppose both arms are exactly the same length and the crystal’s index of refraction with no applied voltage is1.522.

a. With no voltage applied, is the output bright (switch closed, optical signal passing through) or dark (switch open, no signal)? Explain.

b. What is the first index of refraction of the electro-optic crystal larger than 1.522that changes the optical switch to the state opposite the state you found in part a?

A 600 line/mm diffraction grating is in an empty aquarium tank. The index of refraction of the glass walls is nglass=1.50. A helium-neon laser (λ=633nm)is outside the aquarium. The laser beam passes through the glass wall and illuminates the diffraction grating.

a. What is the first-order diffraction angle of the laser beam?

b. What is the first-order diffraction angle of the laser beam after the aquarium is filled with water nwater=1.33?

Light from a sodium lamp λ=589nmilluminates a narrow slit and is observed on a screen 75cmbehind the slit. The distance between the first and third dark fringes is 7.5mm. What is the width (in mm) of the slit?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free