Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

FIGUREP33.36shows the light intensity on a screen behind a double slit. The slit spacing is 0.20mmand the screen is 2.0mbehind the slits. What is the wavelength (in nm) of the light?

Short Answer

Expert verified

The light's wavelength isλ=500nm.

Step by step solution

01

Step: 1 wavelength light:

The wavelength of visible light is 400nmto 700nm, and this is where we understand about the widths of multiple colors in the visible spectrum of light.

02

Step: 2 Finding the width:

As per the diagram,since the width of four fringes is 20cm, the width of one fringe will be

w=0.024w=5×103m.

We understand that the fringe thickness in the double-slit experiment is calculated as

w=λLd.

03

Step: 3 Obtaining the wavelength value:

The wavelength by

λ=wdL

λ=5×103×2×1042

λ=5×107m

localid="1649147686306" λ=500nm.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

FIGUREP33.49shows the interference pattern on a screen 1.0mbehind an 800line/mmdiffraction grating. What is the wavelength (in mm) of the light?

aFind an expression for the positions y1of the first-order fringes of a diffraction grating if the line spacing is large enough for the small-angle approximation tanθsinθθto be valid. Your expression should be in terms of d,Landλ.
b. Use your expression from part a to find an expression for the separationyon the screen of two fringes that differ in wavelength byλ.
cRather than a viewing screen, modern spectrometers use detectors-similar to the one in your digital camera-that are divided into pixels. Consider a spectrometer with a 333lines/mmgrating and a detector with 100pixels/mmlocated 12cmbehind the grating. The resolution of a spectrometer is the smallest wavelength separation λminthat can be measured reliably. What is the resolution of this spectrometer for wavelengths near localid="1649156925210" 550nm, in the center of the visible spectrum? You can assume that the fringe due to one specific wavelength is narrow enough to illuminate only one column of pixels.

Light from a sodium lamp λ=589nmilluminates a narrow slit and is observed on a screen 75cmbehind the slit. The distance between the first and third dark fringes is 7.5mm. What is the width (in mm) of the slit?

A laser beam illuminates a single, narrow slit, and the diffraction pattern is observed on a screen behind the slit. The first secondary maximum is 26mmfrom the center of the diffraction pattern. How far is the first minimum from the center of the diffraction pattern?

A helium-neon laser (λ=633nm) illuminates a diffraction grating. The distance between the two m=1 bright fringes is 32cm on a screen 2.0m behind the grating. What is the spacing between slits of the grating?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free