Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

FIGURE shows the light intensity on a screen 2.5mbehind an aperture. The aperture is illuminated with light of wavelength 620nm.

a. Is the aperture a single slit or a double slit? Explain.

b. If the aperture is a single slit, what is its width? If it is a double slit, what is the spacing between the slits?

Short Answer

Expert verified

(a) The Aperture is a single-slit

(b) Aperture distance of Spacing between the slits,a=155μm

Step by step solution

01

Single-slit experiment

In a single slit experiment, monochromatic light is sent via a single slit of finite width, and an identical pattern appears on the screen. The width and intensity of the single-slit diffraction pattern decrease as we go away from the central maximum, unlike the double-slit diffraction pattern.

02

Find the aperture is single-slit or double-slit (part a)

Because the intensity of the center bright spot is significantly more than that of the secondary maxima, and the central bright spot's breadth is similarly greater than that of the secondary maxima, the presented graph indicates a single-slit experiment pattern.

03

Find spacing between the slits (part b)

The position of the black fringes in the case of a single slit is given as

yp=pLλa

Looking at the figure, we can see that the first black fringe is 1cm away from the center of the primary brilliant point. As a result, given the assumption thaty1=1cm, we may rearrange the previous equation to compute the width of the slit a.

a=Lλy1=(2.5m)×620×10-9m1×10-2m

a=155μm

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For your science fair project you need to design a diffraction grating that will disperse the visible spectrum 400-700nmover30.0 in first order.
a How many lines per millimeter does your grating need?
bWhat is the first-order diffraction angle of light from a sodium lamp λ=589nm?

FIGUREP33.36shows the light intensity on a screen behind a double slit. The slit spacing is 0.20mmand the screen is 2.0mbehind the slits. What is the wavelength (in nm) of the light?

The pinhole camera of FIGURE images distant objects by allowing only a narrow bundle of light rays to pass through the hole and strike the film. If light consisted of particles, you could make the image sharper and sharper (at the expense of getting dimmer and dimmer) by making the aperture smaller and smaller. In practice, diffraction of light by the circular aperture limits the maximum sharpness that can be obtained. Consider two distant points of light, such as two distant streetlights. Each will produce a circular diffraction pattern on the film. The two images can just barely be resolved if the central maximum of one image falls on the first dark fringe of the other image. (This is called Rayleigh’s criterion, and we will explore its implication for optical instruments in Chapter 35.)

a. Optimum sharpness of one image occurs when the diameter of the central maximum equals the diameter of the pinhole. What is the optimum hole size for a pinhole camera in which the film is 20cmbehind the hole? Assume localid="1649089848422" λ=550nman average value for visible light.

b. For this hole size, what is the angle a (in degrees) between two distant sources that can barely be resolved?

c. What is the distance between two street lights localid="1649089839579" 1kmaway that can barely be resolved?

A helium-neon laser (λ=633nm)is built with a glass tube of inside diameter 1.0mm, as shown in FIGURE P33.62. One mirror is partially transmitting to allow the laser beam out. An electrical discharge in the tube causes it to glow like a neon light. From an optical perspective, the laser beam is a light wave that diffracts out through a 1.0-mm-diameter circular opening.

a. Can a laser beam be perfectly parallel, with no spreading? Why or why not?

b. The angle θ1to the first minimum is called the divergence angle of a laser beam. What is the divergence angle of this laser beam?

c. What is the diameter (in mm) of the laser beam after it travels3.0m?

d. What is the diameter of the laser beam after it travels 1.0km?

A Michelson interferometer uses red light with a wavelength of 656.45nm from a hydrogen discharge lamp. How many bright-dark-bright fringe shifts are observed if mirror M2 is moved exactly 1cm?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free