Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider the electron wave function

ψx=cxx1nmcxx1nm

where x is in nm. a. Determine the normalization constant c.

b. Draw a graph of c1x2 over the interval -5 nm … x … 5 nm. Provide numerical scales on both axes.

c. Draw a graph of 0 c1x2 0 2 over the interval -5 nm … x … 5 nm. Provide numerical scales.

d. If 106 electrons are detected, how many will be in the interval -1.0 nm … x … 1.0 nm?

Short Answer

Expert verified

The wave function of the electronψx=cxx1nmcxx1nm

Step by step solution

01

The probability independent

-+ψxdx=1-+ψxdx+-11ψxdx+12ψxdx=1-+cx2dx+-11cxdx+12cx2dx=1c2223=1

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

FIGURE Q39.1 shows the probability density for photons to be detected on thex-axis.

a. Is a photon more likely to be detected at x=0mor at x=1m ? Explain.

b. One million photons are detected. What is the expected number of photons in a 1mm-wide interval at x=0.50m?

When 5 X 1012 photons pass through an experimental apparatus, 2.0 X 109 land in a 0.10-mm-wide strip. What is the probability density at this point?

Soot particles, from incomplete combustion in diesel engines, are typically 15nmin diameter and have a density of 1200kg/m3. FIGURE P39.45 shows soot particles released from rest, in vacuum, just above a thin plate with a 0.50-μm-diameter holeroughly the wavelength of visible light. After passing through the hole, the particles fall distance dand land on a detector. If soot particles were purely classical, they would fall straight down and, ideally, all land in a 0.50-μm-diameter circle. Allowing for some experimental imperfections, any quantum effects would be noticeable if the circle diameter were 2000nm. How far would the particles have to fall to fill a circle of this diameter?

Soot particles, from incomplete combustion in diesel engines, are typically 15nmin diameter and have a density of 1200kg/m3. FIGURE P39.45 shows soot particles released from rest, in vacuum, just above a thin plate with a 0.50-μm-diameter holeroughly the wavelength of visible light. After passing through the hole, the particles fall distance d and land on a detector. If soot particles were purely classical, they would fall straight down and, ideally, all land in a 0.50-μm-diameter circle. Allowing for some experimental imperfections, any quantum effects would be noticeable if the circle diameter were 2000nm. How far would the particles have to fall to fill a circle of this diameter?

What is the smallest one-dimensional box in which you can confine an electron if you want to know for certain that the electron's speed is no more than 10m/s ?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free