Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

akjsbdl

Short Answer

Expert verified

So the length of the pulse will be 85m

Step by step solution

01

Given information

Sound waves of 498 Hz and 502 Hz are superimposed at a temperature where the speed of sound in air is 340 m/s. What is the length ∆x of one wave packet?

02

Step:2 Calculation

Here Δf=502-498=4Hz

SoΔt=14=0.35s.

SoΔx=0.25×340=85m.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

a. Starting with the expression ΔfΔt1for a wave packet, find an expression for the product ΔEΔtfor a photon.

b. Interpret your expression. What does it tell you?

c. The Bohr model of atomic quantization says that an atom in an excited state can jump to a lower-energy state by emitting a photon. The Bohr model says nothing about how long this process takes. You'll learn in Chapter 41 that the time any particular atom spends in the excited state before cmitting a photon is unprcdictablc, but the average lifetime Δtof many atoms can be determined. You can think of Δtas being the uncertainty in your knowledge of how long the atom spends in the excited state. A typical value is Δt10ns. Consider an atom that emits a photon with a 500nmwavelength as it jumps down from an excited state. What is the uncertainty in the energy of the photon? Give your answer in eV.

d. What is the fractional uncertainty ΔE/Ein the photon's energy?

Andrea, whose mass is 50kg, thinks she’s sitting at rest in her 5.0mlong dorm room as she does her physics homework. Can Andrea be sure she’s at rest? If not, within what range is her velocity likely to be?

Soot particles, from incomplete combustion in diesel engines, are typically 15nmin diameter and have a density of 1200kg/m3. FIGURE P39.45 shows soot particles released from rest, in vacuum, just above a thin plate with a 0.50-μm-diameter holeroughly the wavelength of visible light. After passing through the hole, the particles fall distance dand land on a detector. If soot particles were purely classical, they would fall straight down and, ideally, all land in a 0.50-μm-diameter circle. Allowing for some experimental imperfections, any quantum effects would be noticeable if the circle diameter were 2000nm. How far would the particles have to fall to fill a circle of this diameter?

3 shows the probability density for an electron that has passed through an experimental apparatus. What is the probability that the electron will land in a 0.010-mm-wide strip at (a) x = 0.000 mm, (b) x = 0.500 mm, (c) x = 1.000 mm, and (d) x = 2.000 mm?

Heavy nuclei often undergo alpha decay in which they emit an alpha particle (i.e., a helium nucleus). Alpha particles are so tightly bound together that it's reasonable to think of an alpha particle as a single unit within the nucleus from which it is emitted.

a. A238Unucleus, which decays by alpha emission, is 15fmin diameter. Model an alpha particle within U238nucleus as being in a onc-dimensional box. What is the maximum specd an alpha particle is likely to have?

b. The probability that a nucleus will undergo alpha decay is proportional to the frequency with which the alpha particle reflects from the walls of the nucleus. What is that frequency (reflections/s) for a maximum-speed alpha particle within a U238nucleus?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free