Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Chapter 39: Q 7 Exercise (page 1136)

In one experiment, 2000 photons are detected in a 0.10-mm- wide strip where the amplitude of the electromagnetic wave is 10 V/m. How many photons are detected in a nearby 0.10-mm- wide strip where the amplitude is 30 V/m?

Short Answer

Expert verified

Therefore 18000 photons are detected in a nearby 0.10 mm wide strip.

Step by step solution

01

Given information

In one experiment, 2000 photons are detected in a 0.10-mm- wide strip where the amplitude of the electromagnetic wave is 10 V/m.

02

Explanation

Assume that f is the light's frequency and H is the strip's height. So we have:

f=HI(x)δxhN

We have the values as:

A=10V/m,thereforeI=100v2/m2andδx=0.10mm.N=2000

Therefore,

f=Hδx×100h×2000

The number of photons is:

N2=HδxIfhN2=Hδx900Hδx×100h×2000

Substituting the values.

N2=9001002000N2=18000

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A small speck of dust with mass 1.0×10-13ghas fallen into the hole shown in FIGURE P39.46 and appears to be at rest. According to the uncertainty principle, could this particle have enough energy to get out of the hole? If not, what is the deepest hole of this width from which it would have a good chance to escape?

FIGURE P39.46

|You learned in Chapter 37 that, except for hydrogen, the mass of a nucleus with atomic number Z is larger than the mass of the Z protons. The additional mass was ultimately discovered to be due to neutrons, but prior to the discovery of the neutron it was suggested that a nucleus with mass number A might contain A protons and (A-Z) electrons. Such a nucleus would have the mase of A protone, but ite net charge would be only Z o.

a. We know that the diameter of a nuclens is approximately 10 fmm. Model the nucleus as a one-dimensional box and find the minimum range of speeds that an electron would have in such a box.

b. What does your answer imply about the possibility that the nucleus contains electrons? Explain.

a. Starting with the expression ΔfΔt1for a wave packet, find an expression for the product ΔEΔtfor a photon.

b. Interpret your expression. What does it tell you?

c. The Bohr model of atomic quantization says that an atom in an excited state can jump to a lower-energy state by emitting a photon. The Bohr model says nothing about how long this process takes. You'll learn in Chapter 41 that the time any particular atom spends in the excited state before cmitting a photon is unprcdictablc, but the average lifetime Δtof many atoms can be determined. You can think of Δtas being the uncertainty in your knowledge of how long the atom spends in the excited state. A typical value is Δt10ns. Consider an atom that emits a photon with a 500nmwavelength as it jumps down from an excited state. What is the uncertainty in the energy of the photon? Give your answer in eV.

d. What is the fractional uncertainty ΔE/Ein the photon's energy?

Ultrasound pulses with a frequency of 1.000MHzare transmitted into water, where the speed of sound is 1500m/s. The spatial length of each pulse is localid="1650889451408" 12localid="1650889457691" mm.

a. How many complete cycles are contained in one pulse?

b. What range of frequencies must be superimposed to create each pulse?

An electron that is confined to x Ú 0 nm has the normalized wave function c1x2 = b 0 x 6 0 nm 11.414 nm-1/2 2e-x/11.0 nm2 x Ú 0 nm where x is in nm. a. What is the probability of finding the electron in a 0.010-nmwide region at x = 1.0 nm? b. What is the probability of finding the electron in the interval 0.50 nm … x … 1.50 nm?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free