Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

You have just been pulled over for running a red light, and

the police officer has informed you that the fine will be \(250. In

desperation, you suddenly recall an idea that your physics professor recently discussed in class. In your calmest voice, you tell the officer that the laws of physics prevented you from knowing that the light was red. In fact, as you drove toward it, the light was Doppler shifted to where it appeared green to you. “OK,” says the officer, “Then I’ll ticket you for speeding. The fine is \)1 for every 1 km/h over the posted speed limit of 50 km/h.< How big is your fine? Use 650 nm as the wavelength of red light and 540 nm as the wavelength of green light.

Short Answer

Expert verified

The fine will be of$200million.

Step by step solution

01

Given data

Due to the observer is approaching towards the light source, the red light source that has a wavelength of λo=650nmexperiences a Doppler shift to green light of wavelength λ=540nm.

02

Determination of fine amount

The Doppler shift for a light wave approaching, the wavelength

λ=1-vsc1+vscλo540nm=650nmc-vsc+vs0.83=c-vsc+vsc-vsc+vs=0.832=0.69c+vs0.69=c-vs1.69vs=0.31cvs=0.183×3×108m/svs=5.5×107m/s=5.5×104km/svs=2×108km/h

Thus, the speed exceeds 50km/hby role="math" localid="1649957842651" 2×108km/h-50km/h.

Therefore, the fine will berole="math" localid="1649958140230" 2×108km/h-50km/h×$1=$200million.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What are the sound intensity levels for sound waves of intensity (a) 3.0 * 10-6 W/m2 and (b) 3.0 * 10-2 W/m2 ?

FIGURE P16.45 is a history graph at x = 0 m of a wave traveling in the positive x-direction at 4.0 m/s. a. What is the wavelength? b. What is the phase constant of the wave? c. Write the displacement equation for this wave.

One cue your hearing system uses to localize a sound (i.e., to

tell where a sound is coming from) is the slight difference in the

arrival times of the sound at your ears. Your ears are spaced

approximately 20 cm apart. Consider a sound source 5.0 m from

the center of your head along a line 45 to your right. What is the

difference in arrival times? Give your answer in microseconds.

Hint: You are looking for the difference between two numbers that are nearly the same. What does this near equality imply about the necessary precision during intermediate stages of the calculation?

A friend of yours is loudly singing a single note at 400 Hz while racing toward you at 25.0 m/s on a day when the speed of sound is 340 m/s. a. What frequency do you hear? b. What frequency does your friend hear if you suddenly start singing at 400 Hz?

A distant star system is discovered in which a planet with

twice the radius of the earth and rotating 3.0 times as fast as the

earth orbits a star with a total power output of 6.8×1029W.

a. If the star’s radius is 6.0 times that of the sun, what is the

electromagnetic wave intensity at the surface? Astronomers

call this the surface flux. Astronomical data are provided

inside the back cover of the book.

b. Every planet-day (one rotation), the planet receives9.4×1022J.

of energy. What is the planet’s distance from its star? Give

your answer in astronomical units (AU), where 1 AU is the

distance of the earth from the sun.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free