Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A loudspeaker at the origin emits a 120 Hz tone on a day when the speed of sound is 340 m/s. The phase difference between two points on the x-axis is 5.5 rad. What is the distance between these two points?

Short Answer

Expert verified

The distance between the two points is2.5m.

Step by step solution

01

Given information

The frequency of the wave is 120 Hz.

Speed of sound is 340m/s.

The phase difference between the two points isϕ=5.5rad

02

Wavelength of the wave

The wavelength of the wave is given by λ=vf.

Substituting the given values

λ=340120λ=2.83m

03

The distance between the two points

The phase difference of the waves is given by ϕ=2πλx.

Substitute given values

5.5=2π2.83xx=2.477x2.5m

Therefore, the distance between two points is2.5m.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Earthquakes are essentially sound waves—called seismic

waves—traveling through the earth. Because the earth is solid, it can support both longitudinal and transverse seismic waves. The speed of longitudinal waves, called P waves, is 8000 m/s. Transverse waves, called S waves, travel at a slower 4500 m/s. A seismograph records the two waves from a distant earthquake. If the S wave arrives 2.0 min after the P wave, how far away was the earthquake? You can assume that the waves travel in straight lines, although actual seismic waves follow more complex routes.

FIGURE Q16.8 is a snapshot graph of a sinusoidal wave at t = 1.0 s. What is the phase constant of this wave?

One cue your hearing system uses to localize a sound (i.e., to

tell where a sound is coming from) is the slight difference in the

arrival times of the sound at your ears. Your ears are spaced

approximately 20 cm apart. Consider a sound source 5.0 m from

the center of your head along a line 45 to your right. What is the

difference in arrival times? Give your answer in microseconds.

Hint: You are looking for the difference between two numbers that are nearly the same. What does this near equality imply about the necessary precision during intermediate stages of the calculation?

A wave travels with speed 200 m/s. Its wave number is 1.5 rad/m. What are its (a) wavelength and (b) frequency?

The intensity of electromagnetic waves from the sun is 1.4 kW/m2 just above the earth’s atmosphere. Eighty percent of this reaches the surface at noon on a clear summer day. Suppose you think of your back as a 30 cm * 50 cm rectangle. How many joules of solar energy fall on your back as you work on your tan for 1.0 h?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free