Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

9. Suppose you place an ice cube in a beaker of room-temperature water, then seal them in a rigid, well-insulated container. No energy can enter or leave the container.

a. If you open the container an hour later, will you find a beaker of water slightly cooler than room temperature, or a large ice cube and some 100°Csteam?

b. Finding a large ice cube and some 100°Csteam would not violate the first law of thermodynamics. W=0Jand Q=0Jbecause the container is sealed, and ΔEth=0Jbecause the increase in thermal energy of the water molecules that became steam is offset by the decrease in thermal energy of the water molecules that turned to ice. Energy would be conserved, yet we never see an outcome like this. Why not?

Short Answer

Expert verified

a. The temperature of the water is somewhat cooler than that of the room.

b. It is the 2nd law of thermodynamics that states heat must transfer from hot to cold.

Step by step solution

01

Concept Introduction (Part a)

Thermodynamic equilibrium occurs when two bodies or closed systems are in equilibrium, and in this state only energy can be transferred through partitions permeable to heat, leaving the states of the bodies unchanged.

02

Explanation (Part a)

(a) Any interaction that involves two systems with different temperatures will reach the thermal equilibrium when their final temperature is the same.

The heat will transfer from the highest energy system to the lowest energy system in the thermal interaction.

This means that as the water loses energy, the temperature becomes less than room temperature.

03

Final Answer (Part a)

Therefore, water slightly cooler than room temperature.

04

Concept Introduction (Part b)

Thermodynamic equilibrium occurs when two bodies or closed systems are in equilibrium, and in this state only energy can be transferred through partitions permeable to heat, leaving the states of the bodies unchanged.

05

Explanation (Part b)

The second law of thermodynamics states that energy must transfer upon the collision of molecules in two different systems.

Therefore, both systems have different energies.

As long as heat transfers from hot to cold, the first law follows this process but cannot see it.

06

Final Answer (Part b)

Reason: Because 2the nd law states that the heat must transfer from hot to cold.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Scientists studying the behavior of hydrogen at low temperatures need to lower the temperature of 0.50molof hydrogen gas from 300K to 30K. How much thermal energy must they remove from the gas?

Two containers hold several balls. Once a second, one of the balls is chosen at random and switched to the other container. After a long time has passed, you record the number of balls in each container every second. In 10,000s, you find 80times when all the balls were in one container (either one) and the other container was empty.

a. How many balls are there?

b. What is the most likely number of balls to be found in one of the containers?

5.0×1023nitrogen molecules collide with a 10cm2 wall each second. Assume that the molecules all travel with a speed of 400m/s and strike the wall head-on. What is the pressure on the wall?

Interstellar space, far from any stars, is filled with a very low density of hydrogen atoms ,HnotH2. The number density is about1atom/cm3and the temperature is about3K.

a. Estimate the pressure in interstellar space. Give your answer in Paand in localid="1648635470965" atm.

b. What is the rms speed of the atoms?

c. What is the edge lengthlocalid="1648635477647" Lof anlocalid="1648637118909" L×L×Lcube of gas withlocalid="1648635499087" 1.0Jof thermal energy?

Consider a container like that shown in Figure 20.12, with n1moles of a monatomic gas on one side and n2moles of a diatomic gas on the other. The monatomic gas has initial temperature T1i. The diatomic gas has initial temperatureT2i .
a. Show that the equilibrium thermal energies are

E1f=3n13n1+5n2E1i+E2iE2f=5n23n1+5n2E1i+E2i

b. Show that the equilibrium temperature is

Tf=3n1T1i+5n2T2i3n1+5n2

c.2.0g of helium at an initial temperature of role="math" localid="1648474536876" 300Kinteracts thermally with 8.0gof oxygen at an initial temperature of600K . What is the final temperature? How much heat energy is transferred, and in which direction?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free