Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A rigid container holds 0.20gof hydrogen gas. How much heat is needed to change the temperature of the gas

a.From50K torole="math" localid="1648534484983" 100K?

b.From localid="1648534491176" 250Kto localid="1648534494324" 300K?

c.From localid="1648534497013" 2250Kto localid="1648534500972" 2300K?

Short Answer

Expert verified

The heat change in temperature of gas from,

a50Kto 100Kis 62J.

b250Kto 300Kis 104J.

cF2250Kto 3000Kis 150J.

Step by step solution

01

Step: 1 a Temperature changes from 50K to 100K:

If the temperature changes by T,then the thermal energy for diatomic gas changes by equation 20.30in the form

ΔEth=nCVΔT

Knowing the mass Mand the molar mass m, we can get the number of moles by

n=Mm=0.2g2g/mol=0.1mol

This thermal energy converts to heat..The temperature change from50Kto 100K. In this range,CV=32R. So, the heat in equation will be

ΔEth=nCVΔT=32nRΔT=32(0.1mol)(8.314J/molK)(100K50K)=62J.

02

Step: 2 b Temperature changes from 250K to 300K:

The temperature changes from 250Kto 300K.In this range,CV=52R.so,the heat equation will be

ΔEth=nCVΔT=52nRΔT=52(0.1mol)(8.314J/molK)(300K250K)=104J.

03

Step: 3 c Temperature changes from 2250K to 3000K:

The temperature changes from 2250Kto 3000K.In this range,CV=72R.so,the heat equation will be

ΔEth=nCVΔT=72nRΔT=72(0.1mol)(8.314J/molK)(2300K2250K)=150J.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free