Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The rms speed of the atoms in a 2.0g sample of helium gas is 700m/s. What is the thermal energy of the gas?

Short Answer

Expert verified

The thermal energy of the gas isEth=490J.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Step :1 Introduction 

In , the potential energy between the bonds is zero, and the kinetic energy of a monatomic gas is translational. As a result, a monatomic gas's thermal energy isNatoms is given by equation (20.27)in the form

Eth=Nฯตavg

Where ฯตavgis the average energy. The molecule with mass mand velocity vhas a translational kinetic energy on average The average translational kinetic energy of a molecule is affected by its temperature, hence it is connected to the temperature. Tper molecule in the form

ฯตavg=12mvrms2

Where KBis Boltzmann's constant and in SI unit its value is

kB=1.38ร—10โˆ’23J/K

02

Step :2 Explanation 

The mass Mand the molar mass m, we can get the number of molecules by

N=Mm

Use this expressions of Nand ฯตavginto equation (1)to get an expression for vrms2

Eth=Nฯตavg

=Mm12mvavg2

=12Mvrms2

03

Step :3 Substitution 

Now, we plug the values for Mand vrmsinto equation Eth

Eth=12Mvrms2

=122ร—10โˆ’3kg(700m/s)2

=490J

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

During a physics experiment, helium gas is cooled to a temperature of 10Kat a pressure of 0.10atm. What are (a) the mean free path in the gas, (b) the rms speed of the atoms, and (c) the average energy per atom?

A monatomic gas and a diatomic gas have equal numbers of moles and equal temperatures. Both are heated at constant pressure until their volume doubles. What is the ratio Qdiatomic/Qmonatomic?

On earth, STP is based on the average atmospheric pressure at the surface and on a phase change of water that occurs at an easily produced temperature, being only slightly cooler than the average air temperature. The atmosphere of Venus is almost entirely carbon dioxide CO2, the pressure at the surface is a staggering 93atm, and the average temperature is localid="1648638013375" 470ยฐC. Venusian scientists, if they existed, would certainly use the surface pressure as part of their definition of STP. To complete the definition, they would seek a phase change that occurs near the average temperature. Conveniently, the melting point of the element tellurium is localid="1648638019185" 450ยฐC. What are (a) the rms speed and (b) the mean free path of carbon dioxide molecules at Venusian STP based on this phase change in tellurium? The radius of a CO2molecule islocalid="1648638027654" 1.5ร—10-10m.

a. Find an expression for thevrmsof gas molecules in terms ofp,Vand the total mass of the gas M.

b. A gas cylinder has a piston at one end that is moving outward at speed vpistonduring an isobaric expansion of the gas. Find an expression for the rate at which is changing in terms of vpiston, the instantaneous value of vrms, and the instantaneous value Lof the length of the cylinder.

c. A cylindrical sample chamber has a piston moving outward at 0.50m/sduring an isobaric expansion. The rms speed of the gas molecules is localid="1648640672000" 450m/sat the instant the chamber length is localid="1648640676590" 1.5m. At what rate is localid="1648640708264" vrmschanging?

A lottery machine uses blowing air to keep 2000 Ping-Pong balls bouncing around inside a 1.0mร—1.0mร—1.0mbox. The diameter of a Ping-Pong ball is 3.0cm. What is the mean free path between collisions? Give your answer incm.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free