Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Problems 63 through 66 you are given the equation(s) used to solve a problem. For each of these

a. Write a realistic problem for which this is the correct equation(s).

b. Finish the solution of the problem

2.0×1012m/s2=(1.60×10-19C2)E(1.67×10-27kg)E=Q(8.85×10-12C2/Nm2)(0.020m)2Q

Short Answer

Expert verified

(a) What is the strength of the electric field between two parallel conducting planes when a proton is discharged in an area between planes with an acceleration of 2×1012m/s2?

(b) The solution is 7.36×10-11C

Step by step solution

01

Given information and formula used

Given :

2.0×1012m/s2=(1.60×10-19C2)E(1.67×10-27kg)E=Q(8.85×10-12C2/Nm2)(0.020m)2Q

Theory used :

The electric field between two conducting parallel plates is the potential difference divided by the distance by which they are separated.

02

Writing a realistic problem and finding the solution of the problem 

(a) Realistic Problem :

What is the strength of the electric field between two parallel conducting planes when a proton is discharged in an area between planes with an acceleration of 2×1012m/s2?

(b) Solution :

2.0×1012m/s2=(1.60×10-19C2)E(1.67×10-27kg)E=(2.0×1012m/s2)(1.67×10-27kg)(1.60×10-19C2)=2.08×104N/C

Also,

E=Q(8.85×10-12C2/Nm2)(0.020m)2Q=(2.08×104N/C)(8.85×10-12C2/Nm2)(0.020m)2=7.36×10-11C

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Two circular disks spaced0.50mmapart form a parallel-plate capacitor. Transferring3.0×109electrons from one disk to the other causes the electric field strength to be2.0×105N/C. What are the diameters of the disks?

The ozone molecule O3 has a permanent dipole moment of 11.8×10-30Cm. Although the molecule is very slightly bent— which is why it has a dipole moment—it can be modeled as a uniform rod of length 2.5×10-10m with the dipole moment perpendicular to the axis of the rod. Suppose an ozone molecule is in a 5000N/C uniform electric field. In equilibrium, the dipole moment is aligned with the electric field. But if the molecule is rotated by a small angle and released, it will oscillate back and forth in simple harmonic motion. What is the frequency f of oscillation?

What are the strength and direction of the electric field at the position indicated by the dot in FIGURE EX23.2? Specify the direction as an angle above or below horizontal.

The electric field 5.0cmfrom a very long charged wire is ( 2000N/C, toward the wire). What is the charge (in nC) on a 1.0-cm-long segment of the wire?

Your physics assignment is to figure out a way to use electricity to launch a small 6.0-cm-long plastic drink stirrer. You decide that you’ll charge the little plastic rod by rubbing it with fur, then hold it near a long, charged wire, as shown in FIGURE P23.56. When you let go, the electric force of the wire on the plastic rod will shoot it away. Suppose you can uniformly charge the plastic stirrer to 10nCand that the linear charge density of the long wire is 1.0×10-7C/m. What is the net electric force on the plastic stirrer if the end closest to the wire is 2.0cmaway?

Hint: The stirrer cannot be modeled as a point charge; an integration is required.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free