Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Problems 63 through 66 you are given the equation(s) used to solve a problem. For each of these

a. Write a realistic problem for which this is the correct equation(s).

b. Finish the solution of the problem

η2ε0[1-zz2+R2]=12η2ε0

Short Answer

Expert verified

(a) A disc with a radius of Rand a charge of Qthat is uniformly distributed. Discover an equation for the strength of the electric field at a point Pon the axis at a distance zfrom the center.

(b) The solution isz=R3

Step by step solution

01

Given information and formula used

Given :

η2ε0[1-zz2+R2]=12η2ε0

Theory used :

The electric field due to a uniformly charged disc at a point very distant from the surface of the disc is given by:

E=σ2ε0

(σ is the surface charge density on the disc)

02

Writing a realistic problem and finding the solution of the problem 

(a) Realistic problem :

Given a disc with a radius of Rand a charge of Qthat is uniformly distributed. Discover an equation for the strength of the electric field at a point Pon the axis at a distance zfrom the center. If

η2ε0[1-zz2+R2]=12η2ε0

(b) Solution :

From the previous expression, finding the value of z :

η2ε0[1-zz2+R2]=12η2ε01-zz2+R2=12z2z2+R2=14z2+R2=4z2z=R3

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What are the strength and direction of the electric field at the position indicated by the dot in FIGURE EX23.2? Specify the direction as an angle above or below horizontal.

You have a summer intern position with a company that designs and builds nanomachines. An engineer with the company is designing a microscopic oscillator to help keep time, and you’ve been assigned to help him analyze the design. He wants to place a negative charge at the center of a very small, positively charged metal ring. His claim is that the negative charge will undergo simple harmonic motion at a frequency determined by the amount of charge on the ring.

a. Consider a negative charge near the center of a positively charged ring centered on the z-axis. Show that there is a restoring force on the charge if it moves along the z-axisbut stays close to the center of the ring. That is, show there’s a force that tries to keep the charge at z=0. b. Show that for small oscillations, with amplitude <<R, a particle of mass mwith charge-qundergoes simple harmonic motion with frequency f=12πqQ4πε0mR3,RandQare the radius and charge of the ring.

c. Evaluate the oscillation frequency for an electron at the center of a 2.0μmdiameter ring charged to 1.0×10-13C.

The two parallel plates in FIGURE P23.53are 2.0cmapart and the electric field strength between them is 1.0×104N/C. An electron is launched at a 45 angle from the positive plate. What is the maximum initial speed v0 the electron can have without hitting the negative plate?

An electric dipole is formed from two charges, ±q, spaced1.0cm apart. The dipole is at the origin, oriented along the y-axis. The electric field strength at the point x,y=(0cm,10cm)is 360N/C.

a. What is the charge q? Give your answer in nC.

b. What is the electric field strength at the pointx,y=10cm,0cm?

One type of ink-jet printer, called an electrostatic ink-jet printer, forms the letters by using deflecting electrodes to steer charged ink drops up and down vertically as the ink jet sweeps horizontally across the page. The ink jet forms30μm diameter drops of ink, charges them by spraying 800,000 electrons on the surface, and shoots them toward the page at a speed of 20m/s. Along the way, the drops pass through two horizontal, parallel electrodes that are 6.0mmlong,4.0mm wide, and spaced 1.0mm apart. The distance from the center of the electrodes to the paper is 2.0cm. To form the tallest letters, which have a height of 6.0mm, the drops need to be deflected upward (or downward) by 3.0mm. What electric field strength is needed between the electrodes to achieve this deflection? Ink, which consists of dye particles suspended in alcohol, has a density of 800kg/m3 .

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free