Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Problems 63 through 66 you are given the equation(s) used to solve a problem. For each of these

a. Write a realistic problem for which this is the correct equation(s).

b. Finish the solution of the problem

(9.0×109Nm2/C2)2(2.0×10-7C/m)r=25000N/C

Short Answer

Expert verified

(a) Find the Electric field strength at point Pon the rod's axis at distance rfrom the center of an infinite charge rod, with the linear charge density is2×10-7C/min 25000N/C

(b) The solution is0.144m

Step by step solution

01

Given information and formula used

Given :

(9.0×109Nm2/C2)2(2.0×10-7C/m)r=25000N/C

Theory used :

TheElectric field of an infinite line charge with a uniform linear charge density can be obtained by a using Gauss' law. Considering a Gaussian surface in the form of a cylinder at radius r, the electric field has the same magnitude at every point of the cylinder and is directed outward.

02

Writing a realistic problem and finding the solution of the problem 

(a) Realistic problem :

On an infinite charge rod, let the linear charge density is 2×10-7C/m.

In 25000N/C, find the electric field strength at point Pon the rod's axis at distance rfrom the center.

(b) Solution :

(9.0×109Nm2/C2)2(2.0×10-7C/m)r=25000N/Cr=(9.0×109Nm2/C2)2(2.0×10-7C/m)25000N/C=0.144m

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A point charge Q¯is distance r from a dipole consisting of charges±qseparated by distance sT e dipole is initially oriented so that Q is in the plane bisecting the dipole. Immediately after the dipole is released, what are (a) the magnitude of the force and (b) the magnitude of the torque on the dipole? You can assume

Your physics assignment is to figure out a way to use electricity to launch a small 6.0-cm-long plastic drink stirrer. You decide that you’ll charge the little plastic rod by rubbing it with fur, then hold it near a long, charged wire, as shown in FIGURE P23.56. When you let go, the electric force of the wire on the plastic rod will shoot it away. Suppose you can uniformly charge the plastic stirrer to 10nCand that the linear charge density of the long wire is 1.0×10-7C/m. What is the net electric force on the plastic stirrer if the end closest to the wire is 2.0cmaway?

Hint: The stirrer cannot be modeled as a point charge; an integration is required.

Two10cmdiameter charged disks face each other, apart. The left disk is charged to -50nCand the right disk is charged to+50nC.

a. What is the electric fieldE, both magnitude and direction, at the midpoint between the two disks?

b. What is the forceFon a-1.0nCcharge placed at the midpoint?

A 2.0-mm-diameter glass sphere has a charge of +1.0nC. What speed does an electron need to orbit the sphere 1.0mm above the surface?

Reproduce FIGURE Q23.2on your paper. For each part, draw a dot or dots on the figure to show any position or positions (other than infinity) where E=0.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free