Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

What are the strength and direction of the electric field at the position indicated by the dot in FIGURE P23.35? Give your answer (a) in component form and (b) as a magnitude and angle measured cw or ccw (specify which) from the positive x-axis.

Short Answer

Expert verified

a. The electric field at the dot is1.0×105N/Ci^-3.6×104N/Cj^.

b. The angle made by the electric filed is 19.4°counter clockwise direction from the positive X-axis.

Step by step solution

01

Formula for electric field

The electric field is,

E=14πε0qr2

permittivity of free space is ε0.

02

Diagram for electric field position

In the diagram below, two positive charges and one negative charge are located in the three corners of a rectangle.

The electric field generated by the positive charge at the dot is directed away from the positive charge. The electric field generated by the negative charge at the dot is directed towards the negative charge.

03

Explanation (part a)

a.

Calculate the component form of the electric field strength at the place given by the dot in the diagram.

The angle formed by the vertical and the diagonal is,

θ=tan-12.0m4.0m

=26.56°

The component form of the resultant electric field at the dot is as follows:

Er=Exi^+Eyj^

From figure,

Ex=E1-E3cosθ

Ey=E3sinθ-E2

04

Explanation (part a) solution

a.

x-component of the net electric field at the dot.

The magnitude of the electric field due to the charge one is

E1=14πε0q1r12

The magnitude of the electric field due to the charge two is,

E2=14πε0q2r22

The magnitude of the electric field due to the charge three is,

role="math" localid="1651413236226" E3=14πε0q3r32

05

Explanation (part a)

The value,

r3=(2.0cm)2+(4.0cm)2

=4.47cm

Ex=14πε0q1r12-14πε0q3r32cosθ

So,

Ex=9×109C2/N·m2(5.0nC)(2.0cm)2-9×109C2/N·m2(5.0nC)(4.47cm)2cos26.56°

=9×109C2/N·m25.0nC10-9C1nC2.0cm1.0m100cm2-5.0nC10-9C1nC4.47cm1.0m100cm2cos26.56°

=1.0×105N/C

06

Explanation (part a)

For ycomponent,

Ey=14πε0q3r32sinθ-14πε0q2r22

So,

Ey=9×109C2/N·m2(5.0nC)(4.47cm)2(sin26.56)-(10.0nC)(4.0cm)2

=9×109C2/N·m25.0nC10-9C1nC4.47cm1.0m100cm2(sin26.56)-10.0nC10-9C1nC4.0cm1.0m100cm2

=-3.6×104N/C

So electric dot is,

Er=1.0×105N/Ci^+-3.6×104N/Cj^

07

Explanation (part b)

b.

Magnitude of the electric field at the dot is given by the expression,

E=Ex2+Ey2

Substitute all values,

E=1.0×105N/C2+-3.6×104N/C2

=1.1×105N/C

08

Explanation part b

angle of electric field is,

θ'=tan-1EyEx

θ'=tan-1-3.6×104N/C1.0×105N/C

=-19.4°

Here, negative sign indicates counter clockwise direction from the positivex-axis.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

FIGUREP23.41 is a cross section of two infinite lines of charge that extend out of the page. Both have linear charge density λ. Find an expression for the electric field strength E at height y above the midpoint between the lines.

What are the strength and direction of the electric field at the position indicated by the dot in FIGUREP23.36? Give your answer (a)in component form and (b)as a magnitude and angle measured cwor ccw(specify which) from the positive x-axis.

A10-cmlong thin glass rod uniformly charged to+10nCand a 10-cm-long thin plastic rod uniformly charged to-10nCare placed side by side, 4.0cmapart. What are the electric field strengthsE1toE3at distances1.0cm,2.0cm, and from the glass rod a3.0cmlong the line connecting the midpoints of the two rods?

What are the strength and direction of the electric field at the position indicated by the dot in FIGUREEX23.3?Specify the direction as an angle above or below horizontal.

One type of ink-jet printer, called an electrostatic ink-jet printer, forms the letters by using deflecting electrodes to steer charged ink drops up and down vertically as the ink jet sweeps horizontally across the page. The ink jet forms30μm diameter drops of ink, charges them by spraying 800,000 electrons on the surface, and shoots them toward the page at a speed of 20m/s. Along the way, the drops pass through two horizontal, parallel electrodes that are 6.0mmlong,4.0mm wide, and spaced 1.0mm apart. The distance from the center of the electrodes to the paper is 2.0cm. To form the tallest letters, which have a height of 6.0mm, the drops need to be deflected upward (or downward) by 3.0mm. What electric field strength is needed between the electrodes to achieve this deflection? Ink, which consists of dye particles suspended in alcohol, has a density of 800kg/m3 .

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free