Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The electric field strength 10.0cmfrom a very long charged wire is 2000N/C. What is the electric field strength 5.0cm from the wire?

Short Answer

Expert verified

The electric field strength at 5cmfrom the wire is1000N/C.

Step by step solution

01

Given information 

Electric field strength due to a charged wire at10cmis2000N/C.

02

Explanation

Electric field due to the wire at r1=10cmis 2000N/C

E1=λ2πε0r11

Electric field due to the long charged wire at r2=5cmis

E2=λ2πε0r22

Divide equation 1and2

E2E1=λ2πε0r2λ2πε0r1E2E1=r1r2E2=E1r1r2=2000N/C5cm10cm=1000N/C

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The permanent electric dipole moment of the water molecule H2O is 6.2×10-30Cm. What is the maximum possible torque on a water molecule in a 5.0×108N/Celectric field?

An electric field can induce an electric dipole in a neutral atom or molecule by pushing the positive and negative charges in opposite directions. The dipole moment of an induced dipole is directly proportional to the electric field. That is, p=αE, where αis called the polarizability of the molecule. A bigger field stretches the molecule farther and causes a larger dipole moment.

a. What are the units of α?

b. An ion with charge qis distancerfrom a molecule with polarizability α. Find an expression for the force Fionondipole.

An electric dipole is formed from two charges, ±q, spaced1.0cm apart. The dipole is at the origin, oriented along the y-axis. The electric field strength at the point x,y=(0cm,10cm)is 360N/C.

a. What is the charge q? Give your answer in nC.

b. What is the electric field strength at the pointx,y=10cm,0cm?

You have a summer intern position with a company that designs and builds nanomachines. An engineer with the company is designing a microscopic oscillator to help keep time, and you’ve been assigned to help him analyze the design. He wants to place a negative charge at the center of a very small, positively charged metal ring. His claim is that the negative charge will undergo simple harmonic motion at a frequency determined by the amount of charge on the ring.

a. Consider a negative charge near the center of a positively charged ring centered on the z-axis. Show that there is a restoring force on the charge if it moves along the z-axisbut stays close to the center of the ring. That is, show there’s a force that tries to keep the charge at z=0. b. Show that for small oscillations, with amplitude <<R, a particle of mass mwith charge-qundergoes simple harmonic motion with frequency f=12πqQ4πε0mR3,RandQare the radius and charge of the ring.

c. Evaluate the oscillation frequency for an electron at the center of a 2.0μmdiameter ring charged to 1.0×10-13C.

In a classical model of the hydrogen atom, the electron orbits the proton in a circular orbit of radius0.053nm. What is the orbital frequency? The proton is so much more massive than the electron that you can assume the proton is at rest.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free