Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A parallel-plate capacitor is formed from two 6.0-cm-diameter electrodes spaced 2.0mmapart. The electric field strength inside the capacitor is 1.0×106N/C. What is the charge (in nC ) on each electrode?

Short Answer

Expert verified

One electrode has 25nCcharge and other one has -25nCcharge.

Step by step solution

01

Introduction

Electric field Einside circuit is: 1×106N/C. The plate of a circuit has a diameter of6cmand they are 20cmdistance apart.

Formula used

Due to the area capacitor, there is an electric field. Aand charge Q

E=QϵoA...........(1)(1)

02

Explanation

Radius of disk is

r=6cm2

=3cm

Now sum charge from equation (1)

Q=EϵoA

=1×106N/C8.85×10-12C2/N·m2π(0.03m)2

=25nC

03

Find the charge on one electrode

The charge on one electrode is 25nC, whereas the other is -25nC.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A ring of radius Rhas total chargeQ.

aAt what distance along the z-axis is the electric field strength a maximum?

bWhat is the electric field strength at this point?

What are the strength and direction of the electric field at the position indicated by the dot in FIGUREEX23.3?Specify the direction as an angle above or below horizontal.

A point charge Q¯is distance r from a dipole consisting of charges±qseparated by distance sT e dipole is initially oriented so that Q is in the plane bisecting the dipole. Immediately after the dipole is released, what are (a) the magnitude of the force and (b) the magnitude of the torque on the dipole? You can assume

You have a summer intern position with a company that designs and builds nanomachines. An engineer with the company is designing a microscopic oscillator to help keep time, and you’ve been assigned to help him analyze the design. He wants to place a negative charge at the center of a very small, positively charged metal ring. His claim is that the negative charge will undergo simple harmonic motion at a frequency determined by the amount of charge on the ring.

a. Consider a negative charge near the center of a positively charged ring centered on the z-axis. Show that there is a restoring force on the charge if it moves along the z-axisbut stays close to the center of the ring. That is, show there’s a force that tries to keep the charge at z=0. b. Show that for small oscillations, with amplitude <<R, a particle of mass mwith charge-qundergoes simple harmonic motion with frequency f=12πqQ4πε0mR3,RandQare the radius and charge of the ring.

c. Evaluate the oscillation frequency for an electron at the center of a 2.0μmdiameter ring charged to 1.0×10-13C.

Two10cmdiameter charged disks face each other, apart. The left disk is charged to -50nCand the right disk is charged to+50nC.

a. What is the electric fieldE, both magnitude and direction, at the midpoint between the two disks?

b. What is the forceFon a-1.0nCcharge placed at the midpoint?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free