Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The two highest-pitch strings on a violin are tuned to 440 Hz (the A string) and 659 Hz (the E string). What is the ratio of the mass of the A string to that of the E string? Violin strings are all the same length and under essentially the same tension.

Short Answer

Expert verified

1 : 2.243

Step by step solution

01

Given parameters

Two strings of same length and tension but different masses and different fundamental frequencies.

Frequencies are: 659Hz and 440Hz.

02

Applying the formula

f=12LTsμ

03

Taking ratio

f1=12LTsμ1f2=12LTsμ2f1f2=μ2μ1f1f2=m2m14406592=m2m10.445=m2m1m1m2=2.243m1:m2=1:2.243

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A flute filled with helium will, until the helium escapes, play notes at a much higher pitch than normal. Why?

FIGURE EX17.28 shows the circular wave fronts emitted by two

wave sources.

a. Are these sources in phase or out of phase? Explain.

b. Make a table with rows labeled P, Q, and R and columns

labeled r1,r2,r,and C/D. Fill in the table for points P, Q,

and R, giving the distances as multiples of l and indicating,

with a C or a D, whether the interference at that point is

constructive or destructive.

Two loudspeakers emit 400 Hz notes. One speaker sits on the

ground. The other speaker is in the back of a pickup truck. You

hear eight beats per second as the truck drives away from you.

What is the truck’s speed?

Deep-sea divers often breathe a mixture of helium and oxygen to avoid getting the “bends” from breathing high-pressure nitrogen. The helium has the side effect of making the divers’ voices sound odd. Although your vocal tract can be roughly described as an open-closed tube, the way you hold your mouth and position your lips greatly affects the standing-wave frequencies of the vocal tract. This is what allows different vowels to sound different. The “ee” sound is made by shaping your vocal tract to have standing- wave frequencies at, normally, 270 Hz and 2300 Hz. What will these frequencies be for a helium-oxygen mixture in which the speed of sound at body temperature is 750 m/s? The speed of sound in air at body temperature is 350 m/s.

If you take snapshots of a standing wave on a string, there are certain instants when the string is totally flat. What has happened to the energy of the wave at those instants?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free