Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Ultrasound has many medical applications, one of which is to monitor fetal heartbeats by reflecting ultrasound off a fetus in the womb.

a. Consider an object moving at speed votoward an at-rest source that is emitting sound waves of frequency f0. Show that the reflected wave (i.e., the echo) that returns to the source has a Doppler-shifted frequencyfecho=v+v0vv0f0

Short Answer

Expert verified

The solution deals with monitor fetal heartbeats by reflecting ultrasound off a fetus in the womb

Step by step solution

01

dd

dd

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A 25-cm-long wire with a linear density of 20 g/m passes across the open end of an 85-cm-long open-closed tube of air. If the wire, which is fixed at both ends, vibrates at its fundamental frequency, the sound wave it generates excites the second vibrational mode of the tube of air. What is the tension in the wire? Assume vsound = 340 m/s.

In a laboratory experiment, one end of a horizontal string is tied

to a support while the other end passes over a frictionless pulley

and is tied to a 1.5 kg sphere. Students determine the frequencies

of standing waves on the horizontal segment of the string, then

they raise a beaker of water until the hanging 1.5 kg sphere is

completely submerged. The frequency of the fifth harmonic with

the sphere submerged exactly matches the frequency of the third

harmonic before the sphere was submerged. What is the diameter

of the sphere?

As the captain of the scientific team sent to Planet Physics, one

of your tasks is to measure g. You have a long, thin wire labeled

1.00 g/m and a 1.25 kg weight. You have your accurate space cadet

chronometer but, unfortunately, you seem to have forgotten a

meter stick. Undeterred, you first find the midpoint of the wire by

folding it in half. You then attach one end of the wire to the wall

of your laboratory, stretch it horizontally to pass over a pulley at

the midpoint of the wire, then tie the 1.25 kg weight to the end

hanging over the pulley. By vibrating the wire, and measuring

time with your chronometer, you find that the wire’s second harmonic

frequency is 100 Hz. Next, with the 1.25 kg weight still

tied to one end of the wire, you attach the other end to the ceiling

to make a pendulum. You find that the pendulum requires 314 s to

complete 100 oscillations. Pulling out your trusty calculator, you

get to work. What value of g will you report back to headquarters?

Engineers are testing a new thin-film coating whose index of refraction is less than that of glass. They deposit a 560-nm-thick layer on glass, then shine lasers on it. A red laser with a wavelength of 640 nm has no reflection at all, but a violet laser with a wavelength of 400 nm has a maximum reflection. How the coating behaves at other wavelengths is unknown. What is the coating’s index of refraction?

The 40-cm-long tube of FIGURE P17.54 has a 40-cm-long insert

that can be pulled in and out. A vibrating tuning fork is held next to the

tube. As the insert is slowly pulled out, the sound from the tuning fork

creates standing waves in the tube when the total length L is 42.5 cm, 56.7 cm, and 70.9 cm. What is the frequency of the tuning fork? Assume vsound = 343 m/s.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free