Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Piano tuners tune pianos by listening to the beats between the

harmonics of two different strings. When properly tuned, the note

A should have a frequency of 440 Hz and the note E should be

at 659 Hz.

a. What is the frequency difference between the third harmonic

of the A and the second harmonic of the E?

b. A tuner first tunes the A string very precisely by matching it to

a 440 Hz tuning fork. She then strikes the A and E strings simultaneously

and listens for beats between the harmonics. What

beat frequency indicates that the E string is properly tuned?

c. The tuner starts with the tension in the E string a little low,

then tightens it. What is the frequency of the E string when

she hears four beats per second?

Short Answer

Expert verified

The solutions give a detailed description of the different phases of amplitude and

the frequency difference between the third harmonic

of the A and the second harmonic of the E

Step by step solution

01

Discussion on the path difference

The path difference also deals with the phase differences between them and the third speaker.

02

Explanation on phase difference

Provided sloution

l=1320-1318=2Hz

03

Step 3:

The most clearly audible beat will be just the one found. Therefore, the beat frequency will be 2Hz. The frequency given byfb=f3a=f2ef3a=1320

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Western music uses a musical scale with equal temperament tuning, which means that any two adjacent notes have the same frequency ratio r. That is, notes n and n + 1 are related by fn+1 = r fn for all n. In this system, the frequency doubles every 12notesโ€”an interval called an octave.

a. What is the value of r?

b. Orchestras tune to the note A, which has a frequency of440 Hz. What is the frequency of the next note of the scale (called A-sharp)?

Two loudspeakers emit sound waves of the same frequency along the x-axis. The amplitude of each wave is a. The sound intensity is minimum when speaker 2 is 10 cm behind speaker 1. The intensity increases as speaker 2 is moved forward and first reaches maximum, with amplitude 2a, when it is 30 cm in front of speaker 1. What is

a. The wavelength of the sound?

b. The phase difference between the two loudspeakers?

c. The amplitude of the sound (as a multiple of a) if the speakers

are placed side by side?

FIGURE Q17.9 shows the circular waves emitted by two in-phase sources. Are a, b, and c points of maximum constructive interference, maximum destructive interference, or in between?

Two in-phase loudspeakers emit identical 1000 Hz sound waves along the x-axis. What distance should one speaker be placed behind the other for the sound to have an amplitude 1.5 times that of each speaker alone?

If you pour liquid into a tall, narrow glass, you may hear sound with a steadily rising pitch. What is the source of the sound? And why does the pitch rise as the glass fills?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free