Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A carbon dioxide laser is an infrared laser. A CO2 laser with a cavity length of 53.00 cm oscillates in the m = 100,000 mode. What are the wavelength and frequency of the laser beam?

Short Answer

Expert verified

The wavelength of the laser beam is 1.06×10-5m.

The frequency of the laser beam is2.83×1013Hz.

Step by step solution

01

Given information

The length of the cavity is L=53.00cm=0.53m

Modem=100,000

02

The wavelength of the Laser beam

A laser light forms a standing wave inside the cavity.

The wavelength of the laser beam is given by λ=2Lm.

Substitute the given values

λ=2×0.53100000=1.06×10-5m

Therefore, the wavelength of the laser beam is1.06×10-5m.

03

Frequency of the laser beam

The frequency of the laser beam is

f=cλ=3×1081.06×10-5=2.83×1013Hz

Therefore, the frequency of the laser beam is2.83×1013Hz.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What are the three longest wavelengths for standing sound waves in a 121-cm-long tube that is (a) open at both ends and (b) open at one end, closed at the other?

|| The three identical loudspeakers

in FIGURE P17.71 play a 170 Hz tone

in a room where the speed of sound

is 340 m/s. You are standing 4.0 m

in front of the middle speaker. At

this point, the amplitude of the wave

from each speaker is a.

a. What is the amplitude at this

point?

b. How far must speaker 2 be moved

to the left to produce a maximum

amplitude at the point where you

are standing?

c. When the amplitude is maximum,

by what factor is the sound intensity

greater than the sound intensity from a single speaker?

A particularly beautiful note reaching your ear from a rare Stradivarius violin has a wavelength of 39.1 cm. The room is slightly warm, so the speed of sound is 344 m/s. If the string’s linear density is 0.600 g/m and the tension is 150 N, how long is the vibrating section of the violin string?

Ultrasound has many medical applications, one of which is to monitor fetal heartbeats by reflecting ultrasound off a fetus in the womb.

a. Consider an object moving at speed votoward an at-rest source that is emitting sound waves of frequency f0. Show that the reflected wave (i.e., the echo) that returns to the source has a Doppler-shifted frequencyfecho=v+v0vv0f0

FIGURE Q17.8 is a snapshot graph of two plane waves passing

through a region of space. Each wave has a 2.0 mm amplitude

and the same wavelength. What is the net displacement of the

medium at points a, b, and c?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free