Chapter 12: Q.39 (page 332)
Vector and vector . What is the cross product ?
Short Answer
The cross product of the vectors and is .
Chapter 12: Q.39 (page 332)
Vector and vector . What is the cross product ?
The cross product of the vectors and is .
All the tools & learning materials you need for study success - in one app.
Get started for freeThe two objects in FIGURE EX12.29 are balanced on the pivot. What is distance ?
The two blocks in FIGURE CP12.86 are connected by a massless rope that passes over a pulley. The pulley is 12 cm in diameter and has a mass of 2.0 kg. As the pulley turns, friction at the axle exerts a torque of magnitude 0.50 N m. If the blocks are released from rest, how long does it take the 4.0 kg block to reach the floor?
During most of its lifetime, a star maintains an equilibrium size in which the inward force of gravity on each atom is balanced by an outward pressure force due to the heat of the nuclear reactions in the core. But after all the hydrogen “fuel” is consumed by nuclear fusion, the pressure force drops and the star undergoes a gravitational collapse
until it becomes a neutron star. In a neutron star, the electrons and protons of the atoms are squeezed together by gravity until they fuse into neutrons. Neutron stars spin very rapidly and emit intense pulses of radio and light waves, one pulse per rotation. These “pulsing
stars” were discovered in the 1960s and are called pulsars.
a. A star with the mass M = 2.0 x 1030 kg and size R =7.0 x 108 m of our sun rotates once every 30 days. After undergoing gravitational collapse, the star forms a pulsar that is observed by astronomers to emit radio pulses every 0.10 s. By treating the neutron star as a solid sphere, deduce its radius.
b. What is the speed of a point on the equator of the neutron star? Your answers will be somewhat too large because a star cannot be accurately modeled as a solid sphere. Even so, you will be able to show that a star, whose mass is 106larger than the earth’s, can be compressed by gravitational forces to a size smaller than a typical state in the United States!
A person’s center of mass is easily found by having the person lie on a reaction board. A horizontal, 2.5-m-long, 6.1 kg reaction board is supported only at the ends, with one end resting on a scale and the other on a pivot. A 60 kg woman lies on the reaction board with her feet over the pivot. The scale reads 25 kg. What is the distance from the woman’s feet to her center of mass?
Is the center of mass of the dumbbell in FIGURE Q12.1 at point a, b, or c? Explain.
What do you think about this solution?
We value your feedback to improve our textbook solutions.