Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose a camera’s exposure is correct when the lens has a focal length of 8.0 mm. Will the picture be overexposed, underexposed, or still correct if the focal length is “zoomed” to 16.0 mm without changing the diameter of the lens aperture? Explain

Short Answer

Expert verified

Picture is underexposed

Step by step solution

01

Step 1.Given information

The focal length is “zoomed” to 16.0 mm without changing the diameter of the lens aperture

02

Step 2.Simplify

We know that,

ID2f2

If the shutter speed remains the same, D is not changed and f is increased, hence I is decreased.so the picture is underexposed.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A scientist needs to focus a helium-neon laser beam (λ=633nm)to a 10-μm-diameterspot 8.0cmbehind a lens

(a) what focal-length lens should she use?

(b) what minimum diameter must the lens have?

White light is incident onto a 30°prism at the 40°angleshown in Figure p35.41. Violet light emerges perpendicular to the rear face of the prism. The index of refraction of violet light in this glass is 20%larger than the index of refraction of red light. At what angleϕdoes red light emerges from the rear face?

| Marooned on a desert island and with a lot of time on your hands, you decide to disassemble your glasses to make a crude telescope with which you can scan the horizon for rescuers. Luckily you’re farsighted, and, like most people, your two eyes have different lens prescriptions. Your left eye uses a lens of power +4.5 D, and your right eye’s lens is +3.0 D. a. Which lens should you use for the objective and which for the eyepiece? Explain.

b. What will be the magnification of your telescope?

c. How far apart should the two lenses be when you focus on distant objects?

Your task in physics laboratory is to make a microscope from two lenses. one lens has a focal length of 2.0cm,the other objective, and you want the eyepiece to be 16cmfrom the objective.

(a). For viewing with a relaxed eye, how far should the sample be from the objective lens?

(b). What is the magnification of your microscope?

Two converging lenses with focal lengths of 40 cm and 20 cm are 10 cm apart. A 2.0-cm-tall object is 15 cm in front of the 40-cm-focal-length lens. a). Use ray tracing to find the position and height of the image. Do this accurately using a ruler or paper with a grid, then make measurements on your diagram.

b). Calculate the image position and height. Compare with your ray-tracing answers in part a.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free