Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

What is thef-numberof a lens with a 35mmfocal length and a7.0mmdiameter aperture?

Short Answer

Expert verified

The value of fnumberis 5.0mm.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Given information

We have given,

Focal length = 35mm

Diameter of aperture = 7mm

we have to find the fnumberof the lens.

02

Simplify

Thefnumberis defined as the ratio between the focal length role="math" localid="1649843050408" 35mmand the diameter of the aperture is role="math" localid="1649843057651" 7mm.

fnumber=fD

role="math" localid="1649843089488" fnumber=35mm7mm

fnumber=5mm

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A friend lends you the eyepiece of his microscope to use on your own microscope. He claims the spatial resolution of your microscope will be halved, since his eyepiece has the same diameter as yours but twice the magnification. Is his claim valid? Explain.

what is the f-numberof a relaxed eye with the pupil fully dilated to localid="1648735653936" 8.0mm? model the eye as a single lens localid="1648735646217" 2.4cmin front of the retina.

A 2.0mtall man is 10min front of a camera with a 15mmfocal length lens. How tall is his image on the detector?

Your task in physics laboratory is to make a microscope from two lenses. One lens has a focal length of 2.0 cm, the other 1.0 cm. You plan to use the more powerful lens as the objective, and you want the eyepiece to be 16 cm from the objective.

a. For viewing with a relaxed eye, how far should the sample be from the objective lens?

b. What is the magnification of your microscope?

The resolution of a digital camera is limited by two factors:

diffraction by the lens, a limit of any optical system, and the fact

that the sensor is divided into discrete pixels. Consider a typical

point-and-shoot camera that has a 20-mm-focal-length lens and

a sensor with 2.5@mm@wide pixels.

a. First,ass ume an ideal, diffractionless lens. At a distance of

100 m, what is the smallest distance, in cm, between two

point sources of light that the camera can barely resolve? In

answering this question, consider what has to happen on the

sensor to show two image points rather than one. You can use

s′ = f because s W f.

b. You can achieve the pixel-limited resolution of part a only if

the diffraction width of each image point is no greater than

1 pixel in diameter. For what lens diameter is the minimum

spot size equal to the width of a pixel? Use 600 nm for the

wavelength of light.

c. What is the f-number of the lens for the diameter you found in

part b? Your answer is a quite realistic value of the f-number

at which a camera transitions from being pixel limited to

being diffraction limited. For f-numbers smaller than this

(larger-diameter apertures), the resolution is limited by the

pixel size and does not change as you change the aperture. For

f-numbers larger than this (smaller-diameter apertures), the

resolution is limited by diffraction, and it gets worse as you

“stop down” to smaller apertures

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free