Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The resolution of a digital camera is limited by two factors:

diffraction by the lens, a limit of any optical system, and the fact

that the sensor is divided into discrete pixels. Consider a typical

point-and-shoot camera that has a 20-mm-focal-length lens and

a sensor with 2.5@mm@wide pixels.

a. First,ass ume an ideal, diffractionless lens. At a distance of

100 m, what is the smallest distance, in cm, between two

point sources of light that the camera can barely resolve? In

answering this question, consider what has to happen on the

sensor to show two image points rather than one. You can use

s′ = f because s W f.

b. You can achieve the pixel-limited resolution of part a only if

the diffraction width of each image point is no greater than

1 pixel in diameter. For what lens diameter is the minimum

spot size equal to the width of a pixel? Use 600 nm for the

wavelength of light.

c. What is the f-number of the lens for the diameter you found in

part b? Your answer is a quite realistic value of the f-number

at which a camera transitions from being pixel limited to

being diffraction limited. For f-numbers smaller than this

(larger-diameter apertures), the resolution is limited by the

pixel size and does not change as you change the aperture. For

f-numbers larger than this (smaller-diameter apertures), the

resolution is limited by diffraction, and it gets worse as you

“stop down” to smaller apertures

Short Answer

Expert verified

a.)m=0.00020,h=1.3cmb.)D=1.2cmc.)fnumber=1.66

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Part (a) step.1 Given information

Assume an ideal, diffractionless lens. At a distance of

100 m, what is the smallest distance, in cm, between two

point sources of light that the camera can barely resolve? In

answering this question, consider what has to happen on the

sensor to show two image points rather than one. You can use

s′ = f because s W f.

02

Part(a) step.2 : calculation 

03

Part(b) step 1:given information 

Use 600 nm for the wavelength of light.

04

Part (b) step 2 : simplification

05

Part (c) step.1 : Given information 

f-number of the lens for the diameter you found in

part b? Your answer is a quite realistic value of the f-number

at which a camera transitions from being pixel limited to

being diffraction limited. For f-numbers smaller than this

(larger-diameter apertures), the resolution is limited by the

pixel size and does not change as you change the aperture. For

f-numbers larger than this (smaller-diameter apertures), the

resolution is limited by diffraction, and it gets worse as you

“stop down” to smaller apertures

06

Part (c) step.2: Simplification 

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free