Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Once dark adapted, the pupil of your eye is approximately 7 mm in diameter. The headlights of an oncoming car are 120 cm apart. If the lens of your eye is diffraction limited, at what distance are the two headlights marginally resolved? Assume a wavelength of 600 nm and that the index of refraction inside the eye is 1.33. (Your eye is not really good enough to resolve headlights at this distance, due both to aberrations in the lens and to the size of the receptors in your retina, but it comes reasonably close.)

Short Answer

Expert verified

L=15300.5415.30km

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

step.1 given information

If the lens of your eye is diffraction limited, at what distance are the two headlights marginally resolved? Assume a wavelength of 600 nm and that the index of refraction inside the eye is 1.33

02

step.2 calculation


03

step.2 simplification


One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The objective lens of a telescope is a symmetric glass lens with 100cmradii of curvature. The eyepiece lens is also a symmetric glass lens. What are the radii of curvature of the eyepiece lens if the telescope’s magnification is 20×?

A standardized biological microscope has an 8.0mmfocal length objective. what focal-length eyepiece should be used to achieve a total magnification of100x?

| Marooned on a desert island and with a lot of time on your hands, you decide to disassemble your glasses to make a crude telescope with which you can scan the horizon for rescuers. Luckily you’re farsighted, and, like most people, your two eyes have different lens prescriptions. Your left eye uses a lens of power +4.5 D, and your right eye’s lens is +3.0 D. a. Which lens should you use for the objective and which for the eyepiece? Explain.

b. What will be the magnification of your telescope?

c. How far apart should the two lenses be when you focus on distant objects?

FIGURE CP35.50shows a simple zoom lens in which the magnitudes of both focal lengths are f. If the spacing d<f, the image of the converging lens falls on the right side of the diverging lens. Our procedure of letting the image of the first lens act as the object of the second lens will continue to work in this case if we use a negative object distance for the second lens. This is called a virtual object. Consider an object very far to the left (s)of the converging lens. Define the effective focal length as the distance from the midpoint between the lenses to the final image.

a. Show that the effective focal length is

feff=f2-fd+12d2d

b. What is the zoom for a lens that can be adjusted from d=12fto d=14f?

What is the aperture diameter of a 12mmfocal-length lens set to f/4.0?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free