Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A beam of white light enters a transparent material. Wavelengths for which the index of refraction is n are refracted at angle u2. Wavelengths for which the index of refraction is n + dn, where dn V n, are refracted at angle u2 + du.

a. Show that the angular separation of the two wavelengths, in radians, is du = -1dn/n2 tan u2.

b. A beam of white light is incident on a piece of glass at 30.0°. Deep violet light is refracted 0.28° more than deep red light. The index of refraction for deep red light is known to be 1.552. What is the index of refraction for deep violet light?

Short Answer

Expert verified

The angular separation of the two wavelengths, in radians, is du = -1dn/n2 tan u2.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Part (a) step 1 : Given Information

The angular separation of the two wavelengths, in radians, is du = -1dn/n2 tan u2.

02

part (a) step 2 : Calculation

03

Part (b)  step 1 : Given information

The index of refraction for deep violet light.

04

Part (b) step 2 : Simplify

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Marooned on a desert island and with a lot of time on your hands, you decide to disassemble your glasses to make a crude telescope with which you can scan the horizon for rescuers. Luckily you’re farsighted, and, like most people, your two eyes have different lens prescriptions. Your left eye uses a lens of power +4.5Dand your right eye’s lens is +3.0D. a. Which lens should you use for the objective and which for the eyepiece? Explain.

b. What will be the magnification of your telescope?

c. How far apart should the two lenses be when you focus on distant objects?

A 20xtelescope has a 12cmdiameter objective lens. What minimum diameter must the eyepiece lens have to collect all the light rays from an on-axis distant source?

A 2.0-cm-tall object is 20cmto the left of a lens with a focal length of10cmA second lens with a focal length of 15cmis30cmto the right of the first lens.

a. Use ray tracing to find the position and height of the image. Do this accurately using a ruler or paper with a grid, then make measurements on your diagram.

b. Calculate the image position and height. Compare with your ray-tracing answers in part a.

Once dark adapted, the pupil of your eye is approximately 7 mm in diameter. The headlights of an oncoming car are 120 cm apart. If the lens of your eye is diffraction limited, at what distance are the two headlights marginally resolved? Assume a wavelength of 600 nm and that the index of refraction inside the eye is 1.33. (Your eye is not really good enough to resolve headlights at this distance, due both to aberrations in the lens and to the size of the receptors in your retina, but it comes reasonably close.)

To focus parallel light rays to the smallest possible spot, should you use a lens with a small f-number or a large f-number? Explain.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free