Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

White light is incident onto a 30°prism at the 40°angle shown in figurep35.41. violet light emerges perpendicular to the rear face of the prism. The index of refraction of violet light in this glass is 2.0%larger than the index of refraction of red light. At what angle does red light emerges from the rear face?

Short Answer

Expert verified

The red light emerges from the rear face at angleσ=1.02°.

Step by step solution

01

Given information 

We need to find the angle of the red light emerges from the rear face.

02

Simplification 

n1sinθ1=n2sinθ2

σ2=sin-1n1sinθn2

n1=1.00n2=1.53videt1.50x1.02

σ1=50σ2=30.04°

Here, σ2is the angle of deviation, role="math" localid="1650189647745" n1andn2are refractive index and θ1andθ2are the angle of incident.

localid="1650188923215" σ2=sin-1n1sinθ1n2

n1=1.00n2=1.49red1.53xσ98

σ=50σ2=30.72°

Redσ=σR-σV=30.72-30.04=0.68°.

n2=1.49n3=1.00

σ2=0.68°

σ3=sin-1n2sinσ2n3

σ3=1.02°.

03

Diagram

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A 2.0cm-tall object is 20cmto the left of a lens with a focal length of10cm. A second lens with a focal length of5cmis 30cmto the right of the first lens.

a. Use ray tracing to find the position and height of the image. Do this accurately using a ruler or paper with a grid, then make measurements on your diagram.

b. Calculate the image position and height. Compare with your ray-tracing answers in part a.

Once dark adapted, the pupil of your eye is approximately 7 mm in diameter. The headlights of an oncoming car are 120 cm apart. If the lens of your eye is diffraction limited, at what distance are the two headlights marginally resolved? Assume a wavelength of 600 nm and that the index of refraction inside the eye is 1.33. (Your eye is not really good enough to resolve headlights at this distance, due both to aberrations in the lens and to the size of the receptors in your retina, but it comes reasonably close.)

Your task in physics laboratory is to make a microscope from two lenses. one lens has a focal length of 2.0cm,the other objective, and you want the eyepiece to be 16cmfrom the objective.

(a). For viewing with a relaxed eye, how far should the sample be from the objective lens?

(b). What is the magnification of your microscope?

Ellen wears eyeglasses with the prescription-1.0D.

a. What eye condition does Ellen have?

b. What is her far point without the glasses?

The resolution of a digital cameras is limited by two factors diffraction by the lens, a limit of any optical system, and the fact that the sensor is divided into discrete pixels. consirer a typical point-and--shoot camera that has a 20-mm-focal-lengthlens and a sensor with 2.5-μm-widepixels.

(a) . First, assume an ideal, diffractionless lens, at a distance of 100m,what is the smallest distance, in cmbetween two point sources of light that the camera can barely resolve? in answering this question, consider what has to happen on the sensor to show two image points rather than one you can use S1=fbecauses>>f.

(b) . You can achieve the pixel-limied resolution of part a only if the diffraction which of each image point no greater than the diffraction width of image point is no greater than 1pixel in diameter. for what lens diameter is the minimum spot size equal to the width of a pixel ? use 600nmfor the wavelength of light.

(c). what is the f-numberof the lens for the diameter you found in part b? your answer is a quite realistic value of the f-numberat which a camera transitions from being pixel limited to being diffraction limited for f-numbersmaller than this (larger-diameter apertures), the resolution is limited by the pixel size and does not change as you change the apertures. for f-numberlarger than this (smaller-diameter apertures). the resolution is limited by diffraction and it gets worse as you "stop down" to smaller apertures.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free