Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

White light is incident onto a 30°prism at the 40°angle shown in figurep35.41. violet light emerges perpendicular to the rear face of the prism. The index of refraction of violet light in this glass is 2.0%larger than the index of refraction of red light. At what angle does red light emerges from the rear face?

Short Answer

Expert verified

The red light emerges from the rear face at angleσ=1.02°.

Step by step solution

01

Given information 

We need to find the angle of the red light emerges from the rear face.

02

Simplification 

n1sinθ1=n2sinθ2

σ2=sin-1n1sinθn2

n1=1.00n2=1.53videt1.50x1.02

σ1=50σ2=30.04°

Here, σ2is the angle of deviation, role="math" localid="1650189647745" n1andn2are refractive index and θ1andθ2are the angle of incident.

localid="1650188923215" σ2=sin-1n1sinθ1n2

n1=1.00n2=1.49red1.53xσ98

σ=50σ2=30.72°

Redσ=σR-σV=30.72-30.04=0.68°.

n2=1.49n3=1.00

σ2=0.68°

σ3=sin-1n2sinσ2n3

σ3=1.02°.

03

Diagram

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A common optical instrument in a laser laboratory is a beam expander. one type of beam expander is shown in FIGURE P35.28.

a. For what lens spacing d does a parallel laser beam exit from

the right?

b. What is the width of the exiting laser beam?

Modern microscopes are more likely to use a camera than human viewing. This is accomplished by replacing the eyepiece in Figure 35.14 with a photo-ocular that focuses the image of the objective to a real image on the sensor of a digital camera. A typical sensor is 22.5 mm wide and consists of 5625 4.0@mm@ wide pixels. Suppose a microscopist pairs a 40* objective with a 2.5* photo-ocular.

a. What is the field of view? That is, what width on the microscope stage, in mm, fills the sensor?

b. The photo of a cell is 120 pixels in diameter. What is the cell’s actual diameter, in mm?

Your task in physics laboratory is to make a microscope from two lenses. one lens has a focal length of 2.0cm,the other objective, and you want the eyepiece to be 16cmfrom the objective.

(a). For viewing with a relaxed eye, how far should the sample be from the objective lens?

(b). What is the magnification of your microscope?

Suppose a camera’s exposure is correct when the lens has a focal length of 8.0 mm. Will the picture be overexposed, underexposed, or still correct if the focal length is “zoomed” to 16.0 mm without changing the diameter of the lens aperture? Explain

Mordern microscopes are more likely to use a camera than human viewing. This is accomplished by replacing the eyepiece in figure 35.14with a photo-ocular that focuses the image of the objectives to a real image on the sensor of a digital camera. A typical sensor is 22.5mmwide and consists of 56254.0μmwide pixels. suppose a microscopist pairs a 40Xobjectives with a 2.5Xphoto-ocular

a. what is the field of view? That is what width on the microscope stage in mmfills the sensor?

b. The photo of a cell is 120pixelsin a diameter. what is the cell's actual diameter inμm?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free