Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Modern microscopes are more likely to use a camera than human viewing. This is accomplished by replacing the eyepiece in Figure 35.14 with a photo-ocular that focuses the image of the objective to a real image on the sensor of a digital camera. A typical sensor is 22.5 mm wide and consists of 5625 4.0@mm@ wide pixels. Suppose a microscopist pairs a 40* objective with a 2.5* photo-ocular.

a. What is the field of view? That is, what width on the microscope stage, in mm, fills the sensor?

b. The photo of a cell is 120 pixels in diameter. What is the cell’s actual diameter, in mm?

Short Answer

Expert verified

That is, what width on the microscope stage, in mm

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Part (a) step 1 Given Information

That is, what width on the microscope stage, in mm

02

part (b) step 2 Calculation

The photo of a cell is 120 pixels in diameter.

03

part (c) step 3 Simplify 

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What is thef-numberof a lens with a 35mmfocal length and a7.0mmdiameter aperture?

A converging lens with a focal length of 40cmand a diverging lens with a focal length of -40cmare 160cmapart. A 2cmtall object is 60cmin front of the converging lens.

a. Use ray tracing to find the position and height of the image. Do this accurately using a ruler or paper with a grid, then make measurements on your diagram.

b. Calculate the image position and height. Compare with your ray-tracing answers in part a.

Two converging lenses with focal lengths of 40 cm and 20 cm are 10 cm apart. A 2.0-cm-tall object is 15 cm in front of the 40-cm-focal-length lens. a). Use ray tracing to find the position and height of the image. Do this accurately using a ruler or paper with a grid, then make measurements on your diagram.

b). Calculate the image position and height. Compare with your ray-tracing answers in part a.

To focus parallel light rays to the smallest possible spot, should you use a lens with a small f-number or a large f-number? Explain.

A beam of white light enters a transparent material. Wavelengths for which the index of refraction is n are refracted at angle u2. Wavelengths for which the index of refraction is n + dn, where dn V n, are refracted at angle u2 + du.

a. Show that the angular separation of the two wavelengths, in radians, is du = -1dn/n2 tan u2.

b. A beam of white light is incident on a piece of glass at 30.0°. Deep violet light is refracted 0.28° more than deep red light. The index of refraction for deep red light is known to be 1.552. What is the index of refraction for deep violet light?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free