Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A red card is illuminated by red light. What color will the card appear? What if it’s illuminated by blue light?

Short Answer

Expert verified

Red in first case and black in second case.

Step by step solution

01

Step !.Given Information

A red card is illuminated by red light

02

Step 2.Simplify

When illuminated by red light, red light will get reflected as before and we see the red card as red.

If the card is illuminated with blue light, the light gets all absorbed. No light is reflected, so the card looks black.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A camera takes a properly exposed photo with a 3mmdiameter aperture and a shutter speed of 1/125s.. What is the appropriate aperture diameter for a 1/1500sshutter speed?

Once dark adapter, the pupil of your eye is approximately 7mmdiameter. The headlights of an oncoming car are 120cmapart. if the lens of your eye is diffraction-limited, at what distance are the two headlights marginally resolved? assume a wavelength of 600nmand that the index of refraction inside the eye is 1.33

(Your eye is not really good enough to resolve headlight at this distance, due both to aberrations in the lens and to the size of the receptors in your retina, but it comes reasonably close.

Two converging lenses with focal lengths of 40 cm and 20 cm are 10 cm apart. A 2.0-cm-tall object is 15 cm in front of the 40-cm-focal-length lens. a). Use ray tracing to find the position and height of the image. Do this accurately using a ruler or paper with a grid, then make measurements on your diagram.

b). Calculate the image position and height. Compare with your ray-tracing answers in part a.

A 2.0mtall man is 10min front of a camera with a 15mmfocal length lens. How tall is his image on the detector?

White light is incident onto a 30°prism at the 40°angleshown in Figure p35.41. Violet light emerges perpendicular to the rear face of the prism. The index of refraction of violet light in this glass is 20%larger than the index of refraction of red light. At what angleϕdoes red light emerges from the rear face?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free