Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Yang can focus on objects 150cm away with a relaxed eye. With full accommodation, she can focus on objects 20cmaway. After her eyesight is corrected for distance vision, what will her near point be while wearing her glasses?

Short Answer

Expert verified

Near point be while wearing her glasses is S=23.07cm.

Step by step solution

01

Given Information.

We need to find out yang's near point while wearing glasses after her sight is corrected for distance vision.

02

Simplify 

As we know the value of:

f=150cm.

As we can conclude that the yang nearsighted. With glasses and wears a virtual image focused to her far point, 1f=1-150+1and also given the focal length of -150cm.

We know the image has a form at 20cmaway for her to see clearly, and using that image to distance to calculate a new near point and also we can follow the way:

S=(-150)(-20)(-20)-(-150)S=3000130S=23.07cm.

Here,Sis the near point.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A 15cm-focal-length converging lens is 20cmto the right of a 7.0cm-focal-length converging lens. A 1.0cm-tall object is distance L to the left of the first lens.

a. For what value of L is the final image of this two-lens system halfway between the two lenses?

b. What are the height and orientation of the final image?

A 2.0-tall object is 20cmto the left of a lens with a focal length of 10cm. A second lens with a focal length of -5cm is 30cm to the right of the first lens.

a. Use ray tracing to find the position and height of the image. Do this accurately using a ruler or paper with a grid, then make measurements on your diagram.

b. Calculate the image position and height. Compare with your ray-tracing answers in part a.

FIGURE CP35.50shows a simple zoom lens in which the magnitudes of both focal lengths are f. If the spacing d<f, the image of the converging lens falls on the right side of the diverging lens. Our procedure of letting the image of the first lens act as the object of the second lens will continue to work in this case if we use a negative object distance for the second lens. This is called a virtual object. Consider an object very far to the left (s)of the converging lens. Define the effective focal length as the distance from the midpoint between the lenses to the final image.

a. Show that the effective focal length is

feff=f2-fd+12d2d

b. What is the zoom for a lens that can be adjusted from d=12fto d=14f?

Your task in physics laboratory is to make a microscope from two lenses. One lens has a focal length of 2.0 cm, the other 1.0 cm. You plan to use the more powerful lens as the objective, and you want the eyepiece to be 16 cm from the objective.

a. For viewing with a relaxed eye, how far should the sample be from the objective lens?

b. What is the magnification of your microscope?

A common optical instrument in a laser laboratory is a beam expander. One type of beam expander is shown in FIGURE P35.29.

The parallel ray of a laser beam of width ω1enter from the left.

a. For what lens spacing d does a parallel laser beam exit from the right?

b. What is the width ω2of the exiting laser beam?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free